Spaces:
Runtime error
Runtime error
File size: 9,326 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# This code is modified from https://github.com/descriptinc/descript-audio-codec/blob/main/dac/nn/quantize.py
from typing import Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.utils import weight_norm
from ..nn.layers import WNConv1d
class VectorQuantize(nn.Module):
"""
Implementation of VQ similar to Karpathy's repo:
https://github.com/karpathy/deep-vector-quantization
Additionally uses following tricks from Improved VQGAN
(https://arxiv.org/pdf/2110.04627.pdf):
1. Factorized codes: Perform nearest neighbor lookup in low-dimensional space
for improved codebook usage
2. l2-normalized codes: Converts euclidean distance to cosine similarity which
improves training stability
"""
def __init__(self, input_dim: int, codebook_size: int, codebook_dim: int):
super().__init__()
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.in_proj = WNConv1d(input_dim, codebook_dim, kernel_size=1)
self.out_proj = WNConv1d(codebook_dim, input_dim, kernel_size=1)
self.codebook = nn.Embedding(codebook_size, codebook_dim)
def forward(self, z):
"""Quantized the input tensor using a fixed codebook and returns
the corresponding codebook vectors
Parameters
----------
z : Tensor[B x D x T]
Returns
-------
Tensor[B x D x T]
Quantized continuous representation of input
Tensor[1]
Commitment loss to train encoder to predict vectors closer to codebook
entries
Tensor[1]
Codebook loss to update the codebook
Tensor[B x T]
Codebook indices (quantized discrete representation of input)
Tensor[B x D x T]
Projected latents (continuous representation of input before quantization)
"""
# Factorized codes (ViT-VQGAN) Project input into low-dimensional space
z_e = self.in_proj(z) # z_e : (B x D x T)
z_q, indices = self.decode_latents(z_e)
commitment_loss = F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2])
codebook_loss = F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2])
z_q = (
z_e + (z_q - z_e).detach()
) # noop in forward pass, straight-through gradient estimator in backward pass
z_q = self.out_proj(z_q)
return z_q, commitment_loss, codebook_loss, indices, z_e
def embed_code(self, embed_id):
return F.embedding(embed_id, self.codebook.weight)
def decode_code(self, embed_id):
return self.embed_code(embed_id).transpose(1, 2)
def decode_latents(self, latents):
encodings = rearrange(latents, "b d t -> (b t) d")
codebook = self.codebook.weight # codebook: (N x D)
# L2 normalize encodings and codebook (ViT-VQGAN)
encodings = F.normalize(encodings)
codebook = F.normalize(codebook)
# Compute euclidean distance with codebook
dist = (
encodings.pow(2).sum(1, keepdim=True)
- 2 * encodings @ codebook.t()
+ codebook.pow(2).sum(1, keepdim=True).t()
)
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
z_q = self.decode_code(indices)
return z_q, indices
class ResidualVectorQuantize(nn.Module):
"""
Introduced in SoundStream: An end2end neural audio codec
https://arxiv.org/abs/2107.03312
"""
def __init__(
self,
input_dim: int = 512,
n_codebooks: int = 9,
codebook_size: int = 1024,
codebook_dim: Union[int, list] = 8,
quantizer_dropout: float = 0.0,
):
super().__init__()
if isinstance(codebook_dim, int):
codebook_dim = [codebook_dim for _ in range(n_codebooks)]
self.n_codebooks = n_codebooks
self.codebook_dim = codebook_dim
self.codebook_size = codebook_size
self.quantizers = nn.ModuleList(
[
VectorQuantize(input_dim, codebook_size, codebook_dim[i])
for i in range(n_codebooks)
]
)
self.quantizer_dropout = quantizer_dropout
def forward(self, z, n_quantizers: int = None):
"""Quantized the input tensor using a fixed set of `n` codebooks and returns
the corresponding codebook vectors
Parameters
----------
z : Tensor[B x D x T]
n_quantizers : int, optional
No. of quantizers to use
(n_quantizers < self.n_codebooks ex: for quantizer dropout)
Note: if `self.quantizer_dropout` is True, this argument is ignored
when in training mode, and a random number of quantizers is used.
Returns
-------
dict
A dictionary with the following keys:
"z" : Tensor[B x D x T]
Quantized continuous representation of input
"codes" : Tensor[B x N x T]
Codebook indices for each codebook
(quantized discrete representation of input)
"latents" : Tensor[B x N*D x T]
Projected latents (continuous representation of input before quantization)
"vq/commitment_loss" : Tensor[1]
Commitment loss to train encoder to predict vectors closer to codebook
entries
"vq/codebook_loss" : Tensor[1]
Codebook loss to update the codebook
"""
z_q = 0
residual = z
commitment_loss = 0
codebook_loss = 0
codebook_indices = []
latents = []
if n_quantizers is None:
n_quantizers = self.n_codebooks
if self.training:
n_quantizers = torch.ones((z.shape[0],)) * self.n_codebooks + 1
dropout = torch.randint(1, self.n_codebooks + 1, (z.shape[0],))
n_dropout = int(z.shape[0] * self.quantizer_dropout)
n_quantizers[:n_dropout] = dropout[:n_dropout]
n_quantizers = n_quantizers.to(z.device)
for i, quantizer in enumerate(self.quantizers):
if self.training is False and i >= n_quantizers:
break
z_q_i, commitment_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer(
residual
)
# Create mask to apply quantizer dropout
mask = (
torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers
)
z_q = z_q + z_q_i * mask[:, None, None]
residual = residual - z_q_i
# Sum losses
commitment_loss += (commitment_loss_i * mask).mean()
codebook_loss += (codebook_loss_i * mask).mean()
codebook_indices.append(indices_i)
latents.append(z_e_i)
codes = torch.stack(codebook_indices, dim=1)
latents = torch.cat(latents, dim=1)
return z_q, codes, latents, commitment_loss, codebook_loss
def from_codes(self, codes: torch.Tensor):
"""Given the quantized codes, reconstruct the continuous representation
Parameters
----------
codes : Tensor[B x N x T]
Quantized discrete representation of input
Returns
-------
Tensor[B x D x T]
Quantized continuous representation of input
"""
z_q = 0.0
z_p = []
n_codebooks = codes.shape[1]
for i in range(n_codebooks):
z_p_i = self.quantizers[i].decode_code(codes[:, i, :])
z_p.append(z_p_i)
z_q_i = self.quantizers[i].out_proj(z_p_i)
z_q = z_q + z_q_i
return z_q, torch.cat(z_p, dim=1), codes
def from_latents(self, latents: torch.Tensor):
"""Given the unquantized latents, reconstruct the
continuous representation after quantization.
Parameters
----------
latents : Tensor[B x N x T]
Continuous representation of input after projection
Returns
-------
Tensor[B x D x T]
Quantized representation of full-projected space
Tensor[B x D x T]
Quantized representation of latent space
"""
z_q = 0
z_p = []
codes = []
dims = np.cumsum([0] + [q.codebook_dim for q in self.quantizers])
n_codebooks = np.where(dims <= latents.shape[1])[0].max(axis=0, keepdims=True)[
0
]
for i in range(n_codebooks):
j, k = dims[i], dims[i + 1]
z_p_i, codes_i = self.quantizers[i].decode_latents(latents[:, j:k, :])
z_p.append(z_p_i)
codes.append(codes_i)
z_q_i = self.quantizers[i].out_proj(z_p_i)
z_q = z_q + z_q_i
return z_q, torch.cat(z_p, dim=1), torch.stack(codes, dim=1)
if __name__ == "__main__":
rvq = ResidualVectorQuantize(quantizer_dropout=True)
x = torch.randn(16, 512, 80)
y = rvq(x)
print(y["latents"].shape)
|