File size: 10,324 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

"""Multi-Head Attention layer definition."""

import math
import torch
import torch.nn as nn
from modules.wenet_extractor.transformer.attention import MultiHeadedAttention
from typing import Tuple


class RelPositionMultiHeadedAttention(MultiHeadedAttention):
    """Multi-Head Attention layer with relative position encoding.
    Paper: https://arxiv.org/abs/1901.02860
    Args:
        n_head (int): The number of heads.
        n_feat (int): The number of features.
        dropout_rate (float): Dropout rate.
    """

    def __init__(
        self,
        n_head,
        n_feat,
        dropout_rate,
        do_rel_shift=False,
        adaptive_scale=False,
        init_weights=False,
    ):
        """Construct an RelPositionMultiHeadedAttention object."""
        super().__init__(n_head, n_feat, dropout_rate)
        # linear transformation for positional encoding
        self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
        # these two learnable bias are used in matrix c and matrix d
        # as described in https://arxiv.org/abs/1901.02860 Section 3.3
        self.do_rel_shift = do_rel_shift
        self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
        self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
        torch.nn.init.xavier_uniform_(self.pos_bias_u)
        torch.nn.init.xavier_uniform_(self.pos_bias_v)
        self.adaptive_scale = adaptive_scale
        self.ada_scale = nn.Parameter(
            torch.ones([1, 1, n_feat]), requires_grad=adaptive_scale
        )
        self.ada_bias = nn.Parameter(
            torch.zeros([1, 1, n_feat]), requires_grad=adaptive_scale
        )
        if init_weights:
            self.init_weights()

    def init_weights(self):
        input_max = (self.h * self.d_k) ** -0.5
        torch.nn.init.uniform_(self.linear_q.weight, -input_max, input_max)
        torch.nn.init.uniform_(self.linear_q.bias, -input_max, input_max)
        torch.nn.init.uniform_(self.linear_k.weight, -input_max, input_max)
        torch.nn.init.uniform_(self.linear_k.bias, -input_max, input_max)
        torch.nn.init.uniform_(self.linear_v.weight, -input_max, input_max)
        torch.nn.init.uniform_(self.linear_v.bias, -input_max, input_max)
        torch.nn.init.uniform_(self.linear_pos.weight, -input_max, input_max)
        torch.nn.init.uniform_(self.linear_out.weight, -input_max, input_max)
        torch.nn.init.uniform_(self.linear_out.bias, -input_max, input_max)

    def rel_shift(self, x, zero_triu: bool = False):
        """Compute relative positinal encoding.
        Args:
            x (torch.Tensor): Input tensor (batch, time, size).
            zero_triu (bool): If true, return the lower triangular part of
                the matrix.
        Returns:
            torch.Tensor: Output tensor.
        """

        zero_pad = torch.zeros(
            (x.size()[0], x.size()[1], x.size()[2], 1), device=x.device, dtype=x.dtype
        )
        x_padded = torch.cat([zero_pad, x], dim=-1)

        x_padded = x_padded.view(x.size()[0], x.size()[1], x.size(3) + 1, x.size(2))
        x = x_padded[:, :, 1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(2), x.size(3)))
            x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]

        return x

    def forward_attention(
        self,
        value: torch.Tensor,
        scores: torch.Tensor,
        mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
    ) -> torch.Tensor:
        """Compute attention context vector.

        Args:
            value (torch.Tensor): Transformed value, size
                (#batch, n_head, time2, d_k).
            scores (torch.Tensor): Attention score, size
                (#batch, n_head, time1, time2).
            mask (torch.Tensor): Mask, size (#batch, 1, time2) or
                (#batch, time1, time2), (0, 0, 0) means fake mask.

        Returns:
            torch.Tensor: Transformed value (#batch, time1, d_model)
                weighted by the attention score (#batch, time1, time2).

        """
        n_batch = value.size(0)
        # NOTE(xcsong): When will `if mask.size(2) > 0` be True?
        #   1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
        #           1st chunk to ease the onnx export.]
        #   2. pytorch training
        if mask.size(2) > 0:  # time2 > 0
            mask = mask.unsqueeze(1).eq(0)  # (batch, 1, *, time2)
            # For last chunk, time2 might be larger than scores.size(-1)
            mask = mask[:, :, :, : scores.size(-1)]  # (batch, 1, *, time2)
            scores = scores.masked_fill(mask, -float("inf"))
            # (batch, head, time1, time2)
            attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
        # NOTE(xcsong): When will `if mask.size(2) > 0` be False?
        #   1. onnx(16/-1, -1/-1, 16/0)
        #   2. jit (16/-1, -1/-1, 16/0, 16/4)
        else:
            attn = torch.softmax(scores, dim=-1)  # (batch, head, time1, time2)

        p_attn = self.dropout(attn)
        x = torch.matmul(p_attn, value)  # (batch, head, time1, d_k)
        x = (
            x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
        )  # (batch, time1, d_model)

        return self.linear_out(x)  # (batch, time1, d_model)

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        pos_emb: torch.Tensor = torch.empty(0),
        cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
        Args:
            query (torch.Tensor): Query tensor (#batch, time1, size).
            key (torch.Tensor): Key tensor (#batch, time2, size).
            value (torch.Tensor): Value tensor (#batch, time2, size).
            mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
                (#batch, time1, time2), (0, 0, 0) means fake mask.
            pos_emb (torch.Tensor): Positional embedding tensor
                (#batch, time2, size).
            cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
                where `cache_t == chunk_size * num_decoding_left_chunks`
                and `head * d_k == size`
        Returns:
            torch.Tensor: Output tensor (#batch, time1, d_model).
            torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
                where `cache_t == chunk_size * num_decoding_left_chunks`
                and `head * d_k == size`
        """
        if self.adaptive_scale:
            query = self.ada_scale * query + self.ada_bias
            key = self.ada_scale * key + self.ada_bias
            value = self.ada_scale * value + self.ada_bias
        q, k, v = self.forward_qkv(query, key, value)
        q = q.transpose(1, 2)  # (batch, time1, head, d_k)

        # NOTE(xcsong):
        #   when export onnx model, for 1st chunk, we feed
        #       cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
        #       or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
        #       In all modes, `if cache.size(0) > 0` will alwayse be `True`
        #       and we will always do splitting and
        #       concatnation(this will simplify onnx export). Note that
        #       it's OK to concat & split zero-shaped tensors(see code below).
        #   when export jit  model, for 1st chunk, we always feed
        #       cache(0, 0, 0, 0) since jit supports dynamic if-branch.
        # >>> a = torch.ones((1, 2, 0, 4))
        # >>> b = torch.ones((1, 2, 3, 4))
        # >>> c = torch.cat((a, b), dim=2)
        # >>> torch.equal(b, c)        # True
        # >>> d = torch.split(a, 2, dim=-1)
        # >>> torch.equal(d[0], d[1])  # True
        if cache.size(0) > 0:
            key_cache, value_cache = torch.split(cache, cache.size(-1) // 2, dim=-1)
            k = torch.cat([key_cache, k], dim=2)
            v = torch.cat([value_cache, v], dim=2)
        # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
        #   non-trivial to calculate `next_cache_start` here.
        new_cache = torch.cat((k, v), dim=-1)

        n_batch_pos = pos_emb.size(0)
        p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
        p = p.transpose(1, 2)  # (batch, head, time1, d_k)

        # (batch, head, time1, d_k)
        q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
        # (batch, head, time1, d_k)
        q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)

        # compute attention score
        # first compute matrix a and matrix c
        # as described in https://arxiv.org/abs/1901.02860 Section 3.3
        # (batch, head, time1, time2)
        matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))

        # compute matrix b and matrix d
        # (batch, head, time1, time2)
        matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
        # Remove rel_shift since it is useless in speech recognition,
        # and it requires special attention for streaming.
        if self.do_rel_shift:
            matrix_bd = self.rel_shift(matrix_bd)

        scores = (matrix_ac + matrix_bd) / math.sqrt(
            self.d_k
        )  # (batch, head, time1, time2)

        return self.forward_attention(v, scores, mask), new_cache