File size: 12,834 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#
"""Decoder definition."""
from typing import Tuple, List, Optional

import torch

from modules.wenet_extractor.transformer.attention import MultiHeadedAttention
from modules.wenet_extractor.transformer.decoder_layer import DecoderLayer
from modules.wenet_extractor.transformer.embedding import PositionalEncoding
from modules.wenet_extractor.transformer.embedding import NoPositionalEncoding
from modules.wenet_extractor.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,
)
from modules.wenet_extractor.utils.mask import subsequent_mask, make_pad_mask


class TransformerDecoder(torch.nn.Module):
    """Base class of Transfomer decoder module.
    Args:
        vocab_size: output dim
        encoder_output_size: dimension of attention
        attention_heads: the number of heads of multi head attention
        linear_units: the hidden units number of position-wise feedforward
        num_blocks: the number of decoder blocks
        dropout_rate: dropout rate
        self_attention_dropout_rate: dropout rate for attention
        input_layer: input layer type
        use_output_layer: whether to use output layer
        pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
        normalize_before:
            True: use layer_norm before each sub-block of a layer.
            False: use layer_norm after each sub-block of a layer.
        src_attention: if false, encoder-decoder cross attention is not
                       applied, such as CIF model
    """

    def __init__(
        self,
        vocab_size: int,
        encoder_output_size: int,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        self_attention_dropout_rate: float = 0.0,
        src_attention_dropout_rate: float = 0.0,
        input_layer: str = "embed",
        use_output_layer: bool = True,
        normalize_before: bool = True,
        src_attention: bool = True,
    ):
        super().__init__()
        attention_dim = encoder_output_size

        if input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(vocab_size, attention_dim),
                PositionalEncoding(attention_dim, positional_dropout_rate),
            )
        elif input_layer == "none":
            self.embed = NoPositionalEncoding(attention_dim, positional_dropout_rate)
        else:
            raise ValueError(f"only 'embed' is supported: {input_layer}")

        self.normalize_before = normalize_before
        self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
        self.use_output_layer = use_output_layer
        self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
        self.num_blocks = num_blocks
        self.decoders = torch.nn.ModuleList(
            [
                DecoderLayer(
                    attention_dim,
                    MultiHeadedAttention(
                        attention_heads, attention_dim, self_attention_dropout_rate
                    ),
                    (
                        MultiHeadedAttention(
                            attention_heads, attention_dim, src_attention_dropout_rate
                        )
                        if src_attention
                        else None
                    ),
                    PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
                    dropout_rate,
                    normalize_before,
                )
                for _ in range(self.num_blocks)
            ]
        )

    def forward(
        self,
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        ys_in_pad: torch.Tensor,
        ys_in_lens: torch.Tensor,
        r_ys_in_pad: torch.Tensor = torch.empty(0),
        reverse_weight: float = 0.0,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Forward decoder.
        Args:
            memory: encoded memory, float32  (batch, maxlen_in, feat)
            memory_mask: encoder memory mask, (batch, 1, maxlen_in)
            ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
            ys_in_lens: input lengths of this batch (batch)
            r_ys_in_pad: not used in transformer decoder, in order to unify api
                with bidirectional decoder
            reverse_weight: not used in transformer decoder, in order to unify
                api with bidirectional decode
        Returns:
            (tuple): tuple containing:
                x: decoded token score before softmax (batch, maxlen_out,
                    vocab_size) if use_output_layer is True,
                torch.tensor(0.0), in order to unify api with bidirectional decoder
                olens: (batch, )
        """
        tgt = ys_in_pad
        maxlen = tgt.size(1)
        # tgt_mask: (B, 1, L)
        tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
        tgt_mask = tgt_mask.to(tgt.device)
        # m: (1, L, L)
        m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0)
        # tgt_mask: (B, L, L)
        tgt_mask = tgt_mask & m
        x, _ = self.embed(tgt)
        for layer in self.decoders:
            x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory, memory_mask)
        if self.normalize_before:
            x = self.after_norm(x)
        if self.use_output_layer:
            x = self.output_layer(x)
        olens = tgt_mask.sum(1)
        return x, torch.tensor(0.0), olens

    def forward_one_step(
        self,
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        tgt: torch.Tensor,
        tgt_mask: torch.Tensor,
        cache: Optional[List[torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        """Forward one step.
            This is only used for decoding.
        Args:
            memory: encoded memory, float32  (batch, maxlen_in, feat)
            memory_mask: encoded memory mask, (batch, 1, maxlen_in)
            tgt: input token ids, int64 (batch, maxlen_out)
            tgt_mask: input token mask,  (batch, maxlen_out)
                      dtype=torch.uint8 in PyTorch 1.2-
                      dtype=torch.bool in PyTorch 1.2+ (include 1.2)
            cache: cached output list of (batch, max_time_out-1, size)
        Returns:
            y, cache: NN output value and cache per `self.decoders`.
            y.shape` is (batch, maxlen_out, token)
        """
        x, _ = self.embed(tgt)
        new_cache = []
        for i, decoder in enumerate(self.decoders):
            if cache is None:
                c = None
            else:
                c = cache[i]
            x, tgt_mask, memory, memory_mask = decoder(
                x, tgt_mask, memory, memory_mask, cache=c
            )
            new_cache.append(x)
        if self.normalize_before:
            y = self.after_norm(x[:, -1])
        else:
            y = x[:, -1]
        if self.use_output_layer:
            y = torch.log_softmax(self.output_layer(y), dim=-1)
        return y, new_cache


class BiTransformerDecoder(torch.nn.Module):
    """Base class of Transfomer decoder module.
    Args:
        vocab_size: output dim
        encoder_output_size: dimension of attention
        attention_heads: the number of heads of multi head attention
        linear_units: the hidden units number of position-wise feedforward
        num_blocks: the number of decoder blocks
        r_num_blocks: the number of right to left decoder blocks
        dropout_rate: dropout rate
        self_attention_dropout_rate: dropout rate for attention
        input_layer: input layer type
        use_output_layer: whether to use output layer
        pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
        normalize_before:
            True: use layer_norm before each sub-block of a layer.
            False: use layer_norm after each sub-block of a layer.
    """

    def __init__(
        self,
        vocab_size: int,
        encoder_output_size: int,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        r_num_blocks: int = 0,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        self_attention_dropout_rate: float = 0.0,
        src_attention_dropout_rate: float = 0.0,
        input_layer: str = "embed",
        use_output_layer: bool = True,
        normalize_before: bool = True,
    ):
        super().__init__()
        self.left_decoder = TransformerDecoder(
            vocab_size,
            encoder_output_size,
            attention_heads,
            linear_units,
            num_blocks,
            dropout_rate,
            positional_dropout_rate,
            self_attention_dropout_rate,
            src_attention_dropout_rate,
            input_layer,
            use_output_layer,
            normalize_before,
        )

        self.right_decoder = TransformerDecoder(
            vocab_size,
            encoder_output_size,
            attention_heads,
            linear_units,
            r_num_blocks,
            dropout_rate,
            positional_dropout_rate,
            self_attention_dropout_rate,
            src_attention_dropout_rate,
            input_layer,
            use_output_layer,
            normalize_before,
        )

    def forward(
        self,
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        ys_in_pad: torch.Tensor,
        ys_in_lens: torch.Tensor,
        r_ys_in_pad: torch.Tensor,
        reverse_weight: float = 0.0,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Forward decoder.
        Args:
            memory: encoded memory, float32  (batch, maxlen_in, feat)
            memory_mask: encoder memory mask, (batch, 1, maxlen_in)
            ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
            ys_in_lens: input lengths of this batch (batch)
            r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
                used for right to left decoder
            reverse_weight: used for right to left decoder
        Returns:
            (tuple): tuple containing:
                x: decoded token score before softmax (batch, maxlen_out,
                    vocab_size) if use_output_layer is True,
                r_x: x: decoded token score (right to left decoder)
                    before softmax (batch, maxlen_out, vocab_size)
                    if use_output_layer is True,
                olens: (batch, )
        """
        l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad, ys_in_lens)
        r_x = torch.tensor(0.0)
        if reverse_weight > 0.0:
            r_x, _, olens = self.right_decoder(
                memory, memory_mask, r_ys_in_pad, ys_in_lens
            )
        return l_x, r_x, olens

    def forward_one_step(
        self,
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        tgt: torch.Tensor,
        tgt_mask: torch.Tensor,
        cache: Optional[List[torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        """Forward one step.
            This is only used for decoding.
        Args:
            memory: encoded memory, float32  (batch, maxlen_in, feat)
            memory_mask: encoded memory mask, (batch, 1, maxlen_in)
            tgt: input token ids, int64 (batch, maxlen_out)
            tgt_mask: input token mask,  (batch, maxlen_out)
                      dtype=torch.uint8 in PyTorch 1.2-
                      dtype=torch.bool in PyTorch 1.2+ (include 1.2)
            cache: cached output list of (batch, max_time_out-1, size)
        Returns:
            y, cache: NN output value and cache per `self.decoders`.
            y.shape` is (batch, maxlen_out, token)
        """
        return self.left_decoder.forward_one_step(
            memory, memory_mask, tgt, tgt_mask, cache
        )