File size: 4,555 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import shutil
import warnings
import argparse
import torch
import os
import yaml

warnings.simplefilter("ignore")

from .modules.commons import *
import time

import torchaudio
import librosa
from collections import OrderedDict


class FAcodecInference(object):
    def __init__(self, args=None, cfg=None):
        self.args = args
        self.cfg = cfg
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = self._build_model()
        self._load_checkpoint()

    def _build_model(self):
        model = build_model(self.cfg.model_params)
        _ = [model[key].to(self.device) for key in model]
        return model

    def _load_checkpoint(self):
        sd = torch.load(self.args.checkpoint_path, map_location="cpu")
        sd = sd["net"] if "net" in sd else sd
        new_params = dict()
        for key, state_dict in sd.items():
            new_state_dict = OrderedDict()
            for k, v in state_dict.items():
                if k.startswith("module."):
                    k = k[7:]
                new_state_dict[k] = v
            new_params[key] = new_state_dict
        for key in new_params:
            if key in self.model:
                self.model[key].load_state_dict(new_params[key])
        _ = [self.model[key].eval() for key in self.model]

    @torch.no_grad()
    def inference(self, source, output_dir):
        source_audio = librosa.load(source, sr=self.cfg.preprocess_params.sr)[0]
        source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(self.device)

        z = self.model.encoder(source_audio[None, ...].to(self.device).float())
        (
            z,
            quantized,
            commitment_loss,
            codebook_loss,
            timbre,
            codes,
        ) = self.model.quantizer(
            z,
            source_audio[None, ...].to(self.device).float(),
            n_c=self.cfg.model_params.n_c_codebooks,
            return_codes=True,
        )

        full_pred_wave = self.model.decoder(z)

        os.makedirs(output_dir, exist_ok=True)
        source_name = source.split("/")[-1].split(".")[0]
        torchaudio.save(
            f"{output_dir}/reconstructed_{source_name}.wav",
            full_pred_wave[0].cpu(),
            self.cfg.preprocess_params.sr,
        )

        print(
            "Reconstructed audio saved as: ",
            f"{output_dir}/reconstructed_{source_name}.wav",
        )

        return quantized, codes

    @torch.no_grad()
    def voice_conversion(self, source, reference, output_dir):
        source_audio = librosa.load(source, sr=self.cfg.preprocess_params.sr)[0]
        source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(self.device)

        reference_audio = librosa.load(reference, sr=self.cfg.preprocess_params.sr)[0]
        reference_audio = (
            torch.tensor(reference_audio).unsqueeze(0).float().to(self.device)
        )

        z = self.model.encoder(source_audio[None, ...].to(self.device).float())
        z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer(
            z,
            source_audio[None, ...].to(self.device).float(),
            n_c=self.cfg.model_params.n_c_codebooks,
        )

        z_ref = self.model.encoder(reference_audio[None, ...].to(self.device).float())
        (
            z_ref,
            quantized_ref,
            commitment_loss_ref,
            codebook_loss_ref,
            timbre_ref,
        ) = self.model.quantizer(
            z_ref,
            reference_audio[None, ...].to(self.device).float(),
            n_c=self.cfg.model_params.n_c_codebooks,
        )

        z_conv = self.model.quantizer.voice_conversion(
            quantized[0] + quantized[1],
            reference_audio[None, ...].to(self.device).float(),
        )
        full_pred_wave = self.model.decoder(z_conv)

        os.makedirs(output_dir, exist_ok=True)
        source_name = source.split("/")[-1].split(".")[0]
        reference_name = reference.split("/")[-1].split(".")[0]
        torchaudio.save(
            f"{output_dir}/converted_{source_name}_to_{reference_name}.wav",
            full_pred_wave[0].cpu(),
            self.cfg.preprocess_params.sr,
        )

        print(
            "Voice conversion results saved as: ",
            f"{output_dir}/converted_{source_name}_to_{reference_name}.wav",
        )