File size: 6,595 Bytes
8c92a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# VITS for Singing Voice Conversion

This is an implementation of VITS as acoustic model for end-to-end singing voice conversion. Adapted from [so-vits-svc](https://github.com/svc-develop-team/so-vits-svc), SoftVC content encoder is used to extract content features from the source audio. These feature vectors are directly fed into VITS without the need for conversion to a text-based intermediate representation.

There are four stages in total:

1. Data preparation
2. Features extraction
3. Training
4. Inference/conversion

> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
> ```bash
> cd Amphion
> ```

## 1. Data Preparation

### Dataset Download

By default, we utilize the five datasets for training: M4Singer, Opencpop, OpenSinger, SVCC, and VCTK. How to download them is detailed [here](../../datasets/README.md).

### Configuration

Specify the dataset paths in  `exp_config.json`. Note that you can change the `dataset` list to use your preferred datasets.

```json
    "dataset": [
        "m4singer",
        "opencpop",
        "opensinger",
        "svcc",
        "vctk"
    ],
    "dataset_path": {
        // TODO: Fill in your dataset path
        "m4singer": "[M4Singer dataset path]",
        "opencpop": "[Opencpop dataset path]",
        "opensinger": "[OpenSinger dataset path]",
        "svcc": "[SVCC dataset path]",
        "vctk": "[VCTK dataset path]"
    },
```

## 2. Features Extraction

### Content-based Pretrained Models Download

By default, we utilize ContentVec and Whisper to extract content features. How to download them is detailed [here](../../../pretrained/README.md).

### Configuration

Specify the dataset path and the output path for saving the processed data and the training model in `exp_config.json`:

```json
    // TODO: Fill in the output log path. The default value is "Amphion/ckpts/svc"
    "log_dir": "ckpts/svc",
    "preprocess": {
        // TODO: Fill in the output data path. The default value is "Amphion/data"
        "processed_dir": "data",
        ...
    },
```

### Run

Run the `run.sh` as the preproces stage (set  `--stage 1`).

```bash
sh egs/svc/VitsSVC/run.sh --stage 1
```

> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.

## 3. Training

### Configuration

We provide the default hyparameters in the `exp_config.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.

```json
"train": {
        "batch_size": 32,
        ...
        "adamw": {
            "lr": 2.0e-4
        },
        ...
    }
```

### Run

Run the `run.sh` as the training stage (set  `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/svc/[YourExptName]`.

```bash
sh egs/svc/VitsSVC/run.sh --stage 2 --name [YourExptName]
```

> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.

## 4. Inference/Conversion

### Run

For inference/conversion, you need to specify the following configurations when running `run.sh`:

| Parameters                                          | Description                                                                                                                                                       | Example                                                                                                                                                                                                  |
| --------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `--infer_expt_dir`                                  | The experimental directory which contains `checkpoint`                                                                                                            | `[Your path to save logs and checkpoints]/[YourExptName]`                                                                                                                                                |
| `--infer_output_dir`                                | The output directory to save inferred audios.                                                                                                                     | `[Your path to save logs and checkpoints]/[YourExptName]/result`                                                                                                                                         |
| `--infer_source_file` or `--infer_source_audio_dir` | The inference source (can be a json file or a dir).                                                                                                               | The `infer_source_file` could be `[Your path to save processed data]/[YourDataset]/test.json`, and the `infer_source_audio_dir` is a folder which includes several audio files (*.wav, *.mp3 or *.flac). |
| `--infer_target_speaker`                            | The target speaker you want to convert into. You can refer to `[Your path to save logs and checkpoints]/[YourExptName]/singers.json` to choose a trained speaker. | For opencpop dataset, the speaker name would be `opencpop_female1`.                                                                                                                                      |
| `--infer_key_shift`                                 | How many semitones you want to transpose.                                                                                                                         | `"autoshfit"` (by default), `3`, `-3`, etc.                                                                                                                                                              |

For example, if you want to make `opencpop_female1` sing the songs in the `[Your Audios Folder]`, just run:

```bash
sh egs/svc/VitsSVC/run.sh --stage 3 --gpu "0" \
	--infer_expt_dir Amphion/ckpts/svc/[YourExptName] \
	--infer_output_dir Amphion/ckpts/svc/[YourExptName]/result \
	--infer_source_audio_dir [Your Audios Folder] \
	--infer_target_speaker "opencpop_female1" \
	--infer_key_shift "autoshift"
```