File size: 5,150 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import json
from tqdm import tqdm


def cal_metadata(cfg, dataset_types=["train", "test"]):
    """
    Dump metadata (singers.json, meta_info.json, utt2singer) for singer dataset or multi-datasets.
    """
    from collections import Counter

    datasets = cfg.dataset

    print("-" * 10)
    print("Preparing metadata...")
    print("Including: \n{}\n".format("\n".join(datasets)))

    datasets.sort()

    for dataset in tqdm(datasets):
        save_dir = os.path.join(cfg.preprocess.processed_dir, dataset)
        assert os.path.exists(save_dir)

        # 'train.json' and 'test.json' and 'valid.json' of target dataset
        meta_info = dict()
        utterances_dict = dict()
        all_utterances = list()
        duration = dict()
        total_duration = 0.0
        for dataset_type in dataset_types:
            metadata = os.path.join(save_dir, "{}.json".format(dataset_type))

            # Sort the metadata as the duration order
            with open(metadata, "r", encoding="utf-8") as f:
                utterances = json.load(f)
            utterances = sorted(utterances, key=lambda x: x["Duration"])
            utterances_dict[dataset_type] = utterances
            all_utterances.extend(utterances)

            # Write back the sorted metadata
            with open(metadata, "w") as f:
                json.dump(utterances, f, indent=4, ensure_ascii=False)

            # Get the total duration and singer names for train and test utterances
            duration[dataset_type] = sum(utt["Duration"] for utt in utterances)
            total_duration += duration[dataset_type]

        # Paths of metadata needed to be generated
        singer_dict_file = os.path.join(save_dir, cfg.preprocess.spk2id)
        utt2singer_file = os.path.join(save_dir, cfg.preprocess.utt2spk)

        singer_names = set(
            f"{replace_augment_name(utt['Dataset'])}_{utt['Singer']}"
            for utt in all_utterances
        )

        # Write the utt2singer file and sort the singer names
        with open(utt2singer_file, "w", encoding="utf-8") as f:
            for utt in all_utterances:
                f.write(
                    f"{utt['Dataset']}_{utt['Uid']}\t{replace_augment_name(utt['Dataset'])}_{utt['Singer']}\n"
                )

        singer_names = sorted(singer_names)
        singer_lut = {name: i for i, name in enumerate(singer_names)}

        # dump singers.json
        with open(singer_dict_file, "w", encoding="utf-8") as f:
            json.dump(singer_lut, f, indent=4, ensure_ascii=False)

        meta_info = {
            "dataset": dataset,
            "statistics": {
                "size": len(all_utterances),
                "hours": round(total_duration / 3600, 4),
            },
        }

        for dataset_type in dataset_types:
            meta_info[dataset_type] = {
                "size": len(utterances_dict[dataset_type]),
                "hours": round(duration[dataset_type] / 3600, 4),
            }

        meta_info["singers"] = {"size": len(singer_lut)}

        # Use Counter to count the minutes for each singer
        total_singer2mins = Counter()
        training_singer2mins = Counter()
        for dataset_type in dataset_types:
            for utt in utterances_dict[dataset_type]:
                k = f"{replace_augment_name(utt['Dataset'])}_{utt['Singer']}"
                if dataset_type == "train":
                    training_singer2mins[k] += utt["Duration"] / 60
                total_singer2mins[k] += utt["Duration"] / 60

        training_singer2mins = dict(
            sorted(training_singer2mins.items(), key=lambda x: x[1], reverse=True)
        )
        training_singer2mins = {k: round(v, 2) for k, v in training_singer2mins.items()}
        meta_info["singers"]["training_minutes"] = training_singer2mins

        total_singer2mins = dict(
            sorted(total_singer2mins.items(), key=lambda x: x[1], reverse=True)
        )
        total_singer2mins = {k: round(v, 2) for k, v in total_singer2mins.items()}
        meta_info["singers"]["minutes"] = total_singer2mins

        with open(os.path.join(save_dir, "meta_info.json"), "w") as f:
            json.dump(meta_info, f, indent=4, ensure_ascii=False)

        for singer, min in training_singer2mins.items():
            print(f"Speaker/Singer {singer}: {min} mins for training")
        print("-" * 10, "\n")


def replace_augment_name(dataset: str) -> str:
    """Replace the augmented dataset name with the original dataset name.
    >>> print(replace_augment_name("dataset_equalizer"))
    dataset
    """
    if "equalizer" in dataset:
        dataset = dataset.replace("_equalizer", "")
    elif "formant_shift" in dataset:
        dataset = dataset.replace("_formant_shift", "")
    elif "pitch_shift" in dataset:
        dataset = dataset.replace("_pitch_shift", "")
    elif "time_stretch" in dataset:
        dataset = dataset.replace("_time_stretch", "")
    else:
        pass
    return dataset