File size: 2,372 Bytes
8c92a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import librosa

import numpy as np

from torchmetrics.audio.stoi import ShortTimeObjectiveIntelligibility


def extract_stoi(audio_ref, audio_deg, **kwargs):
    """Compute Short-Time Objective Intelligibility between the predicted and the ground truth audio.
    audio_ref: path to the ground truth audio.
    audio_deg: path to the predicted audio.
    fs: sampling rate.
    method: "dtw" will use dtw algorithm to align the length of the ground truth and predicted audio.
            "cut" will cut both audios into a same length according to the one with the shorter length.
    """
    # Load hyperparameters
    kwargs = kwargs["kwargs"]
    fs = kwargs["fs"]
    method = kwargs["method"]

    # Load audio
    if fs != None:
        audio_ref, _ = librosa.load(audio_ref, sr=fs)
        audio_deg, _ = librosa.load(audio_deg, sr=fs)
    else:
        audio_ref, fs = librosa.load(audio_ref)
        audio_deg, fs = librosa.load(audio_deg)

    # Initialize method
    stoi = ShortTimeObjectiveIntelligibility(fs, extended=False)

    # Audio length alignment
    if len(audio_ref) != len(audio_deg):
        if method == "cut":
            length = min(len(audio_ref), len(audio_deg))
            audio_ref = audio_ref[:length]
            audio_deg = audio_deg[:length]
        elif method == "dtw":
            _, wp = librosa.sequence.dtw(audio_ref, audio_deg, backtrack=True)
            audio_ref_new = []
            audio_deg_new = []
            for i in range(wp.shape[0]):
                ref_index = wp[i][0]
                deg_index = wp[i][1]
                audio_ref_new.append(audio_ref[ref_index])
                audio_deg_new.append(audio_deg[deg_index])
            audio_ref = np.array(audio_ref_new)
            audio_deg = np.array(audio_deg_new)
            assert len(audio_ref) == len(audio_deg)

    # Convert to tensor
    audio_ref = torch.from_numpy(audio_ref)
    audio_deg = torch.from_numpy(audio_deg)

    if torch.cuda.is_available():
        device = torch.device("cuda")
        audio_ref = audio_ref.to(device)
        audio_deg = audio_deg.to(device)
        stoi = stoi.to(device)

    return stoi(audio_deg, audio_ref).detach().cpu().numpy().tolist()