File size: 3,207 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch

import numpy as np

from torch import nn
from torch.nn import functional as F


class Stretch2d(nn.Module):
    def __init__(self, x_scale, y_scale, mode="nearest"):
        super(Stretch2d, self).__init__()
        self.x_scale = x_scale
        self.y_scale = y_scale
        self.mode = mode

    def forward(self, x):
        return F.interpolate(
            x, scale_factor=(self.y_scale, self.x_scale), mode=self.mode
        )


def _get_activation(upsample_activation):
    nonlinear = getattr(nn, upsample_activation)
    return nonlinear


class UpsampleNetwork(nn.Module):
    def __init__(
        self,
        upsample_scales,
        upsample_activation="none",
        upsample_activation_params={},
        mode="nearest",
        freq_axis_kernel_size=1,
        cin_pad=0,
        cin_channels=128,
    ):
        super(UpsampleNetwork, self).__init__()
        self.up_layers = nn.ModuleList()
        total_scale = np.prod(upsample_scales)
        self.indent = cin_pad * total_scale
        for scale in upsample_scales:
            freq_axis_padding = (freq_axis_kernel_size - 1) // 2
            k_size = (freq_axis_kernel_size, scale * 2 + 1)
            padding = (freq_axis_padding, scale)
            stretch = Stretch2d(scale, 1, mode)
            conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
            conv.weight.data.fill_(1.0 / np.prod(k_size))
            conv = nn.utils.weight_norm(conv)
            self.up_layers.append(stretch)
            self.up_layers.append(conv)
            if upsample_activation != "none":
                nonlinear = _get_activation(upsample_activation)
                self.up_layers.append(nonlinear(**upsample_activation_params))

    def forward(self, c):
        """
        Args:
            c : B x C x T
        """

        # B x 1 x C x T
        c = c.unsqueeze(1)
        for f in self.up_layers:
            c = f(c)
        # B x C x T
        c = c.squeeze(1)

        if self.indent > 0:
            c = c[:, :, self.indent : -self.indent]
        return c


class ConvInUpsampleNetwork(nn.Module):
    def __init__(
        self,
        upsample_scales,
        upsample_activation="none",
        upsample_activation_params={},
        mode="nearest",
        freq_axis_kernel_size=1,
        cin_pad=0,
        cin_channels=128,
    ):
        super(ConvInUpsampleNetwork, self).__init__()
        # To capture wide-context information in conditional features
        # meaningless if cin_pad == 0
        ks = 2 * cin_pad + 1
        self.conv_in = nn.Conv1d(
            cin_channels, cin_channels, kernel_size=ks, padding=cin_pad, bias=False
        )
        self.upsample = UpsampleNetwork(
            upsample_scales,
            upsample_activation,
            upsample_activation_params,
            mode,
            freq_axis_kernel_size,
            cin_pad=cin_pad,
            cin_channels=cin_channels,
        )

    def forward(self, c):
        c_up = self.upsample(self.conv_in(c))
        return c_up