File size: 6,923 Bytes
8c92a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import faulthandler

faulthandler.enable()

import os
import argparse
import json
from multiprocessing import cpu_count


from utils.util import load_config
from preprocessors.processor import preprocess_dataset
from preprocessors.metadata import cal_metadata
from processors import acoustic_extractor, content_extractor, data_augment


def extract_acoustic_features(dataset, output_path, cfg, n_workers=1):
    """Extract acoustic features of utterances in the dataset

    Args:
        dataset (str): name of dataset, e.g. opencpop
        output_path (str): directory that stores train, test and feature files of datasets
        cfg (dict): dictionary that stores configurations
        n_workers (int, optional): num of processes to extract features in parallel. Defaults to 1.
    """
    types = ["train", "test"] if "eval" not in dataset else ["test"]
    metadata = []
    dataset_output = os.path.join(output_path, dataset)

    for dataset_type in types:
        dataset_file = os.path.join(dataset_output, "{}.json".format(dataset_type))
        with open(dataset_file, "r") as f:
            metadata.extend(json.load(f))

        # acoustic_extractor.extract_utt_acoustic_features_parallel(
        #     metadata, dataset_output, cfg, n_workers=n_workers
        # )
    acoustic_extractor.extract_utt_acoustic_features_serial(
        metadata, dataset_output, cfg
    )


def extract_content_features(dataset, output_path, cfg, num_workers=1):
    """Extract content features of utterances in the dataset

    Args:
        dataset (str): name of dataset, e.g. opencpop
        output_path (str): directory that stores train, test and feature files of datasets
        cfg (dict): dictionary that stores configurations
    """
    types = ["train", "test"] if "eval" not in dataset else ["test"]
    metadata = []
    for dataset_type in types:
        dataset_output = os.path.join(output_path, dataset)
        dataset_file = os.path.join(dataset_output, "{}.json".format(dataset_type))
        with open(dataset_file, "r") as f:
            metadata.extend(json.load(f))

    content_extractor.extract_utt_content_features_dataloader(
        cfg, metadata, num_workers
    )


def preprocess(cfg, args):
    """Proprocess raw data of single or multiple datasets (in cfg.dataset)

    Args:
        cfg (dict): dictionary that stores configurations
        args (ArgumentParser): specify the configuration file and num_workers
    """
    # Specify the output root path to save the processed data
    output_path = cfg.preprocess.processed_dir
    os.makedirs(output_path, exist_ok=True)

    ## Split train and test sets
    for dataset in cfg.dataset:
        print("Preprocess {}...".format(dataset))
        preprocess_dataset(
            dataset,
            cfg.dataset_path[dataset],
            output_path,
            cfg.preprocess,
            cfg.task_type,
            is_custom_dataset=dataset in cfg.use_custom_dataset,
        )

    # Data augmentation: create new wav files with pitch shift, formant shift, equalizer, time stretch
    try:
        assert isinstance(
            cfg.preprocess.data_augment, list
        ), "Please provide a list of datasets need to be augmented."
        if len(cfg.preprocess.data_augment) > 0:
            new_datasets_list = []
            for dataset in cfg.preprocess.data_augment:
                new_datasets = data_augment.augment_dataset(cfg, dataset)
                new_datasets_list.extend(new_datasets)
            cfg.dataset.extend(new_datasets_list)
            print("Augmentation datasets: ", cfg.dataset)
    except:
        print("No Data Augmentation.")

    # Dump metadata of datasets (singers, train/test durations, etc.)
    cal_metadata(cfg)

    ## Prepare the acoustic features
    for dataset in cfg.dataset:
        # Skip augmented datasets which do not need to extract acoustic features
        # We will copy acoustic features from the original dataset later
        if (
            "pitch_shift" in dataset
            or "formant_shift" in dataset
            or "equalizer" in dataset in dataset
        ):
            continue
        print(
            "Extracting acoustic features for {} using {} workers ...".format(
                dataset, args.num_workers
            )
        )
        extract_acoustic_features(dataset, output_path, cfg, args.num_workers)
        # Calculate the statistics of acoustic features
        if cfg.preprocess.mel_min_max_norm:
            acoustic_extractor.cal_mel_min_max(dataset, output_path, cfg)

        if cfg.preprocess.extract_pitch:
            acoustic_extractor.cal_pitch_statistics_svc(dataset, output_path, cfg)

    # Copy acoustic features for augmented datasets by creating soft-links
    for dataset in cfg.dataset:
        if "pitch_shift" in dataset:
            src_dataset = dataset.replace("_pitch_shift", "")
            src_dataset_dir = os.path.join(output_path, src_dataset)
        elif "formant_shift" in dataset:
            src_dataset = dataset.replace("_formant_shift", "")
            src_dataset_dir = os.path.join(output_path, src_dataset)
        elif "equalizer" in dataset:
            src_dataset = dataset.replace("_equalizer", "")
            src_dataset_dir = os.path.join(output_path, src_dataset)
        else:
            continue
        dataset_dir = os.path.join(output_path, dataset)
        metadata = []
        for split in ["train", "test"] if not "eval" in dataset else ["test"]:
            metadata_file_path = os.path.join(src_dataset_dir, "{}.json".format(split))
            with open(metadata_file_path, "r") as f:
                metadata.extend(json.load(f))
        print("Copying acoustic features for {}...".format(dataset))
        acoustic_extractor.copy_acoustic_features(
            metadata, dataset_dir, src_dataset_dir, cfg
        )
        if cfg.preprocess.mel_min_max_norm:
            acoustic_extractor.cal_mel_min_max(dataset, output_path, cfg)

        if cfg.preprocess.extract_pitch:
            acoustic_extractor.cal_pitch_statistics(dataset, output_path, cfg)

    # Prepare the content features
    for dataset in cfg.dataset:
        print("Extracting content features for {}...".format(dataset))
        extract_content_features(dataset, output_path, cfg, args.num_workers)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config", default="config.json", help="json files for configurations."
    )
    parser.add_argument("--num_workers", type=int, default=int(cpu_count()))
    parser.add_argument("--prepare_alignment", type=bool, default=False)

    args = parser.parse_args()
    cfg = load_config(args.config)

    preprocess(cfg, args)


if __name__ == "__main__":
    main()