File size: 28,197 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import json
import os
import shutil
import torch
import time
from pathlib import Path
import torch
from tqdm import tqdm
import re
import logging
import json5
import accelerate
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from torch.utils.data import ConcatDataset, DataLoader
from accelerate import DistributedDataParallelKwargs
from schedulers.scheduler import Eden
from models.base.base_sampler import build_samplers
from models.base.new_trainer import BaseTrainer


class TTSTrainer(BaseTrainer):
    r"""The base trainer for all TTS models. It inherits from BaseTrainer and implements
    ``build_criterion``, ``_build_dataset`` and ``_build_singer_lut`` methods. You can inherit from this
    class, and implement ``_build_model``, ``_forward_step``.
    """

    def __init__(self, args=None, cfg=None):
        self.args = args
        self.cfg = cfg

        cfg.exp_name = args.exp_name

        # init with accelerate
        self._init_accelerator()
        self.accelerator.wait_for_everyone()

        with self.accelerator.main_process_first():
            self.logger = get_logger(args.exp_name, log_level="INFO")

        # Log some info
        self.logger.info("=" * 56)
        self.logger.info("||\t\t" + "New training process started." + "\t\t||")
        self.logger.info("=" * 56)
        self.logger.info("\n")
        self.logger.debug(f"Using {args.log_level.upper()} logging level.")
        self.logger.info(f"Experiment name: {args.exp_name}")
        self.logger.info(f"Experiment directory: {self.exp_dir}")
        self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
        if self.accelerator.is_main_process:
            os.makedirs(self.checkpoint_dir, exist_ok=True)
        self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")

        # init counts
        self.batch_count: int = 0
        self.step: int = 0
        self.epoch: int = 0
        self.max_epoch = (
            self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
        )
        self.logger.info(
            "Max epoch: {}".format(
                self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
            )
        )

        # Check values
        if self.accelerator.is_main_process:
            self.__check_basic_configs()
            # Set runtime configs
            self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
            self.checkpoints_path = [
                [] for _ in range(len(self.save_checkpoint_stride))
            ]
            self.keep_last = [
                i if i > 0 else float("inf") for i in self.cfg.train.keep_last
            ]
            self.run_eval = self.cfg.train.run_eval

        # set random seed
        with self.accelerator.main_process_first():
            start = time.monotonic_ns()
            self._set_random_seed(self.cfg.train.random_seed)
            end = time.monotonic_ns()
            self.logger.debug(
                f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
            )
            self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")

        # setup data_loader
        with self.accelerator.main_process_first():
            self.logger.info("Building dataset...")
            start = time.monotonic_ns()
            self.train_dataloader, self.valid_dataloader = self._build_dataloader()
            end = time.monotonic_ns()
            self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")

        # save phone table to exp dir. Should be done before building model due to loading phone table in model
        if cfg.preprocess.use_phone and cfg.preprocess.phone_extractor != "lexicon":
            self._save_phone_symbols_file_to_exp_path()

        # setup model
        with self.accelerator.main_process_first():
            self.logger.info("Building model...")
            start = time.monotonic_ns()
            self.model = self._build_model()
            end = time.monotonic_ns()
            self.logger.debug(self.model)
            self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
            self.logger.info(
                f"Model parameters: {self.__count_parameters(self.model)/1e6:.2f}M"
            )

        # optimizer & scheduler
        with self.accelerator.main_process_first():
            self.logger.info("Building optimizer and scheduler...")
            start = time.monotonic_ns()
            self.optimizer = self._build_optimizer()
            self.scheduler = self._build_scheduler()
            end = time.monotonic_ns()
            self.logger.info(
                f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
            )

        # create criterion
        with self.accelerator.main_process_first():
            self.logger.info("Building criterion...")
            start = time.monotonic_ns()
            self.criterion = self._build_criterion()
            end = time.monotonic_ns()
            self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms")

        # Resume or Finetune
        with self.accelerator.main_process_first():
            self._check_resume()

        # accelerate prepare
        self.logger.info("Initializing accelerate...")
        start = time.monotonic_ns()
        self._accelerator_prepare()
        end = time.monotonic_ns()
        self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms")

        # save config file path
        self.config_save_path = os.path.join(self.exp_dir, "args.json")
        self.device = self.accelerator.device

        if cfg.preprocess.use_spkid and cfg.train.multi_speaker_training:
            self.speakers = self._build_speaker_lut()
            self.utt2spk_dict = self._build_utt2spk_dict()

        # Only for TTS tasks
        self.task_type = "TTS"
        self.logger.info("Task type: {}".format(self.task_type))

    def _check_resume(self):
        # if args.resume:
        if self.args.resume or (
            self.cfg.model_type == "VALLE" and self.args.train_stage == 2
        ):
            checkpoint_dir = self.checkpoint_dir
            if self.cfg.model_type == "VALLE" and self.args.train_stage == 2:
                ls = [str(i) for i in Path(checkpoint_dir).glob("*")]
                if (
                    self.args.checkpoint_path is None or len(ls) == 0
                ):  # Train stage 2 from scratch using the checkpoint of stage 1
                    assert (
                        self.args.ar_model_ckpt_dir is not None
                    ), "Error: ar_model_ckpt_dir should be set to train nar model."
                    self.args.resume_type = "finetune"
                    checkpoint_dir = self.args.ar_model_ckpt_dir
                    self.logger.info(
                        f"Training NAR model at stage 2 using the checkpoint of AR model at stage 1."
                    )

            self.logger.info(f"Resuming from checkpoint: {checkpoint_dir}")
            start = time.monotonic_ns()
            self.ckpt_path = self._load_model(
                checkpoint_dir, self.args.checkpoint_path, self.args.resume_type
            )
            self.logger.info(f"Checkpoint path: {self.ckpt_path}")
            end = time.monotonic_ns()
            self.logger.info(
                f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
            )
            self.checkpoints_path = json.load(
                open(os.path.join(self.ckpt_path, "ckpts.json"), "r")
            )

    def _init_accelerator(self):
        self.exp_dir = os.path.join(
            os.path.abspath(self.cfg.log_dir), self.args.exp_name
        )
        project_config = ProjectConfiguration(
            project_dir=self.exp_dir,
            logging_dir=os.path.join(self.exp_dir, "log"),
        )
        kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
        self.accelerator = accelerate.Accelerator(
            gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step,
            log_with=self.cfg.train.tracker,
            project_config=project_config,
            kwargs_handlers=[kwargs],
        )
        if self.accelerator.is_main_process:
            os.makedirs(project_config.project_dir, exist_ok=True)
            os.makedirs(project_config.logging_dir, exist_ok=True)
        with self.accelerator.main_process_first():
            self.accelerator.init_trackers(self.args.exp_name)

    def _accelerator_prepare(self):
        (
            self.train_dataloader,
            self.valid_dataloader,
        ) = self.accelerator.prepare(
            self.train_dataloader,
            self.valid_dataloader,
        )

        if isinstance(self.model, dict):
            for key in self.model.keys():
                self.model[key] = self.accelerator.prepare(self.model[key])
        else:
            self.model = self.accelerator.prepare(self.model)

        if isinstance(self.optimizer, dict):
            for key in self.optimizer.keys():
                self.optimizer[key] = self.accelerator.prepare(self.optimizer[key])
        else:
            self.optimizer = self.accelerator.prepare(self.optimizer)

        if isinstance(self.scheduler, dict):
            for key in self.scheduler.keys():
                self.scheduler[key] = self.accelerator.prepare(self.scheduler[key])
        else:
            self.scheduler = self.accelerator.prepare(self.scheduler)

    ### Following are methods only for TTS tasks ###
    def _build_dataset(self):
        pass

    def _build_criterion(self):
        pass

    def _build_model(self):
        pass

    def _build_dataloader(self):
        """Build dataloader which merges a series of datasets."""
        # Build dataset instance for each dataset and combine them by ConcatDataset
        Dataset, Collator = self._build_dataset()

        # Build train set
        datasets_list = []
        for dataset in self.cfg.dataset:
            subdataset = Dataset(self.cfg, dataset, is_valid=False)
            datasets_list.append(subdataset)
        train_dataset = ConcatDataset(datasets_list)
        train_collate = Collator(self.cfg)
        _, batch_sampler = build_samplers(train_dataset, self.cfg, self.logger, "train")
        train_loader = DataLoader(
            train_dataset,
            collate_fn=train_collate,
            batch_sampler=batch_sampler,
            num_workers=self.cfg.train.dataloader.num_worker,
            pin_memory=self.cfg.train.dataloader.pin_memory,
        )

        # Build test set
        datasets_list = []
        for dataset in self.cfg.dataset:
            subdataset = Dataset(self.cfg, dataset, is_valid=True)
            datasets_list.append(subdataset)
        valid_dataset = ConcatDataset(datasets_list)
        valid_collate = Collator(self.cfg)
        _, batch_sampler = build_samplers(valid_dataset, self.cfg, self.logger, "valid")
        valid_loader = DataLoader(
            valid_dataset,
            collate_fn=valid_collate,
            batch_sampler=batch_sampler,
            num_workers=self.cfg.train.dataloader.num_worker,
            pin_memory=self.cfg.train.dataloader.pin_memory,
        )
        return train_loader, valid_loader

    def _build_optimizer(self):
        pass

    def _build_scheduler(self):
        pass

    def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"):
        """Load model from checkpoint. If a folder is given, it will
        load the latest checkpoint in checkpoint_dir. If a path is given
        it will load the checkpoint specified by checkpoint_path.
        **Only use this method after** ``accelerator.prepare()``.
        """
        if checkpoint_path is None or checkpoint_path == "":
            ls = [str(i) for i in Path(checkpoint_dir).glob("*")]
            ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
            checkpoint_path = ls[0]
        self.logger.info("Load model from {}".format(checkpoint_path))
        print("Load model from {}".format(checkpoint_path))
        if resume_type == "resume":
            self.accelerator.load_state(checkpoint_path)
            self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1
            self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1
        elif resume_type == "finetune":
            if isinstance(self.model, dict):
                for idx, sub_model in enumerate(self.model.keys()):
                    if idx == 0:
                        ckpt_name = "pytorch_model.bin"
                    else:
                        ckpt_name = "pytorch_model_{}.bin".format(idx)

                    self.model[sub_model].load_state_dict(
                        torch.load(os.path.join(checkpoint_path, ckpt_name))
                    )
                self.model[sub_model].cuda(self.accelerator.device)
            else:
                self.model.load_state_dict(
                    torch.load(os.path.join(checkpoint_path, "pytorch_model.bin"))
                )
                self.model.cuda(self.accelerator.device)
            self.logger.info("Load model weights for finetune SUCCESS!")

        else:
            raise ValueError("Unsupported resume type: {}".format(resume_type))

        return checkpoint_path

    ### THIS IS MAIN ENTRY ###
    def train_loop(self):
        r"""Training loop. The public entry of training process."""
        # Wait everyone to prepare before we move on
        self.accelerator.wait_for_everyone()
        # dump config file
        if self.accelerator.is_main_process:
            self.__dump_cfg(self.config_save_path)

        # self.optimizer.zero_grad()
        # Wait to ensure good to go

        self.accelerator.wait_for_everyone()
        while self.epoch < self.max_epoch:
            self.logger.info("\n")
            self.logger.info("-" * 32)
            self.logger.info("Epoch {}: ".format(self.epoch))

            # Do training & validating epoch
            train_total_loss, train_losses = self._train_epoch()
            if isinstance(train_losses, dict):
                for key, loss in train_losses.items():
                    self.logger.info("  |- Train/{} Loss: {:.6f}".format(key, loss))
                    self.accelerator.log(
                        {"Epoch/Train {} Loss".format(key): loss},
                        step=self.epoch,
                    )

            valid_total_loss, valid_losses = self._valid_epoch()
            if isinstance(valid_losses, dict):
                for key, loss in valid_losses.items():
                    self.logger.info("  |- Valid/{} Loss: {:.6f}".format(key, loss))
                    self.accelerator.log(
                        {"Epoch/Valid {} Loss".format(key): loss},
                        step=self.epoch,
                    )

            self.logger.info("  |- Train/Loss: {:.6f}".format(train_total_loss))
            self.logger.info("  |- Valid/Loss: {:.6f}".format(valid_total_loss))
            self.accelerator.log(
                {
                    "Epoch/Train Loss": train_total_loss,
                    "Epoch/Valid Loss": valid_total_loss,
                },
                step=self.epoch,
            )

            self.accelerator.wait_for_everyone()

            # Check if hit save_checkpoint_stride and run_eval
            run_eval = False
            if self.accelerator.is_main_process:
                save_checkpoint = False
                hit_dix = []
                for i, num in enumerate(self.save_checkpoint_stride):
                    if self.epoch % num == 0:
                        save_checkpoint = True
                        hit_dix.append(i)
                        run_eval |= self.run_eval[i]

            self.accelerator.wait_for_everyone()
            if self.accelerator.is_main_process and save_checkpoint:
                path = os.path.join(
                    self.checkpoint_dir,
                    "epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
                        self.epoch, self.step, train_total_loss
                    ),
                )
                self.accelerator.save_state(path)

                json.dump(
                    self.checkpoints_path,
                    open(os.path.join(path, "ckpts.json"), "w"),
                    ensure_ascii=False,
                    indent=4,
                )

                # Remove old checkpoints
                to_remove = []
                for idx in hit_dix:
                    self.checkpoints_path[idx].append(path)
                    while len(self.checkpoints_path[idx]) > self.keep_last[idx]:
                        to_remove.append((idx, self.checkpoints_path[idx].pop(0)))

                # Search conflicts
                total = set()
                for i in self.checkpoints_path:
                    total |= set(i)
                do_remove = set()
                for idx, path in to_remove[::-1]:
                    if path in total:
                        self.checkpoints_path[idx].insert(0, path)
                    else:
                        do_remove.add(path)

                # Remove old checkpoints
                for path in do_remove:
                    shutil.rmtree(path, ignore_errors=True)
                    self.logger.debug(f"Remove old checkpoint: {path}")

            self.accelerator.wait_for_everyone()
            if run_eval:
                # TODO: run evaluation
                pass

            # Update info for each epoch
            self.epoch += 1

        # Finish training and save final checkpoint
        self.accelerator.wait_for_everyone()
        if self.accelerator.is_main_process:
            path = os.path.join(
                self.checkpoint_dir,
                "final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
                    self.epoch, self.step, valid_total_loss
                ),
            )
            self.accelerator.save_state(
                os.path.join(
                    self.checkpoint_dir,
                    "final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
                        self.epoch, self.step, valid_total_loss
                    ),
                )
            )

            json.dump(
                self.checkpoints_path,
                open(os.path.join(path, "ckpts.json"), "w"),
                ensure_ascii=False,
                indent=4,
            )

        self.accelerator.end_training()

    ### Following are methods that can be used directly in child classes ###
    def _train_epoch(self):
        r"""Training epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        if isinstance(self.model, dict):
            for key in self.model.keys():
                self.model[key].train()
        else:
            self.model.train()

        epoch_sum_loss: float = 0.0
        epoch_losses: dict = {}
        epoch_step: int = 0
        for batch in tqdm(
            self.train_dataloader,
            desc=f"Training Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            # Do training step and BP
            with self.accelerator.accumulate(self.model):
                total_loss, train_losses, _ = self._train_step(batch)
            self.batch_count += 1

            # Update info for each step
            # TODO: step means BP counts or batch counts?
            if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
                if isinstance(self.scheduler, dict):
                    for key in self.scheduler.keys():
                        self.scheduler[key].step()
                else:
                    if isinstance(self.scheduler, Eden):
                        self.scheduler.step_batch(self.step)
                    else:
                        self.scheduler.step()

                epoch_sum_loss += total_loss

                if isinstance(train_losses, dict):
                    for key, value in train_losses.items():
                        epoch_losses[key] += value

                if isinstance(train_losses, dict):
                    for key, loss in train_losses.items():
                        self.accelerator.log(
                            {"Epoch/Train {} Loss".format(key): loss},
                            step=self.step,
                        )

                self.step += 1
                epoch_step += 1

        self.accelerator.wait_for_everyone()

        epoch_sum_loss = (
            epoch_sum_loss
            / len(self.train_dataloader)
            * self.cfg.train.gradient_accumulation_step
        )

        for key in epoch_losses.keys():
            epoch_losses[key] = (
                epoch_losses[key]
                / len(self.train_dataloader)
                * self.cfg.train.gradient_accumulation_step
            )

        return epoch_sum_loss, epoch_losses

    @torch.inference_mode()
    def _valid_epoch(self):
        r"""Testing epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        if isinstance(self.model, dict):
            for key in self.model.keys():
                self.model[key].eval()
        else:
            self.model.eval()

        epoch_sum_loss = 0.0
        epoch_losses = dict()
        for batch in tqdm(
            self.valid_dataloader,
            desc=f"Validating Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            total_loss, valid_losses, valid_stats = self._valid_step(batch)
            epoch_sum_loss += total_loss
            if isinstance(valid_losses, dict):
                for key, value in valid_losses.items():
                    if key not in epoch_losses.keys():
                        epoch_losses[key] = value
                    else:
                        epoch_losses[key] += value

        epoch_sum_loss = epoch_sum_loss / len(self.valid_dataloader)
        for key in epoch_losses.keys():
            epoch_losses[key] = epoch_losses[key] / len(self.valid_dataloader)

        self.accelerator.wait_for_everyone()

        return epoch_sum_loss, epoch_losses

    def _train_step(self):
        pass

    def _valid_step(self, batch):
        pass

    def _inference(self):
        pass

    def _is_valid_pattern(self, directory_name):
        directory_name = str(directory_name)
        pattern = r"^epoch-\d{4}_step-\d{7}_loss-\d{1}\.\d{6}"
        return re.match(pattern, directory_name) is not None

    def _check_basic_configs(self):
        if self.cfg.train.gradient_accumulation_step <= 0:
            self.logger.fatal("Invalid gradient_accumulation_step value!")
            self.logger.error(
                f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
            )
            self.accelerator.end_training()
            raise ValueError(
                f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
            )

    def __dump_cfg(self, path):
        os.makedirs(os.path.dirname(path), exist_ok=True)
        json5.dump(
            self.cfg,
            open(path, "w"),
            indent=4,
            sort_keys=True,
            ensure_ascii=False,
            quote_keys=True,
        )

    def __check_basic_configs(self):
        if self.cfg.train.gradient_accumulation_step <= 0:
            self.logger.fatal("Invalid gradient_accumulation_step value!")
            self.logger.error(
                f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
            )
            self.accelerator.end_training()
            raise ValueError(
                f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
            )
        # TODO: check other values

    @staticmethod
    def __count_parameters(model):
        model_param = 0.0
        if isinstance(model, dict):
            for key, value in model.items():
                model_param += sum(p.numel() for p in model[key].parameters())
        else:
            model_param = sum(p.numel() for p in model.parameters())
        return model_param

    def _build_speaker_lut(self):
        # combine speakers
        if not os.path.exists(os.path.join(self.exp_dir, self.cfg.preprocess.spk2id)):
            speakers = {}
        else:
            with open(
                os.path.join(self.exp_dir, self.cfg.preprocess.spk2id), "r"
            ) as speaker_file:
                speakers = json.load(speaker_file)
        for dataset in self.cfg.dataset:
            speaker_lut_path = os.path.join(
                self.cfg.preprocess.processed_dir, dataset, self.cfg.preprocess.spk2id
            )
            with open(speaker_lut_path, "r") as speaker_lut_path:
                singer_lut = json.load(speaker_lut_path)
            for singer in singer_lut.keys():
                if singer not in speakers:
                    speakers[singer] = len(speakers)
        with open(
            os.path.join(self.exp_dir, self.cfg.preprocess.spk2id), "w"
        ) as speaker_file:
            json.dump(speakers, speaker_file, indent=4, ensure_ascii=False)
        print(
            "speakers have been dumped to {}".format(
                os.path.join(self.exp_dir, self.cfg.preprocess.spk2id)
            )
        )
        return speakers

    def _build_utt2spk_dict(self):
        # combine speakers
        utt2spk = {}
        if not os.path.exists(os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk)):
            utt2spk = {}
        else:
            with open(
                os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk), "r"
            ) as utt2spk_file:
                for line in utt2spk_file.readlines():
                    utt, spk = line.strip().split("\t")
                    utt2spk[utt] = spk
        for dataset in self.cfg.dataset:
            utt2spk_dict_path = os.path.join(
                self.cfg.preprocess.processed_dir, dataset, self.cfg.preprocess.utt2spk
            )
            with open(utt2spk_dict_path, "r") as utt2spk_dict:
                for line in utt2spk_dict.readlines():
                    utt, spk = line.strip().split("\t")
                    if utt not in utt2spk.keys():
                        utt2spk[utt] = spk
        with open(
            os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk), "w"
        ) as utt2spk_file:
            for utt, spk in utt2spk.items():
                utt2spk_file.write(utt + "\t" + spk + "\n")
        print(
            "utterance and speaker mapper have been dumped to {}".format(
                os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk)
            )
        )
        return utt2spk

    def _save_phone_symbols_file_to_exp_path(self):
        phone_symbols_file = os.path.join(
            self.cfg.preprocess.processed_dir,
            self.cfg.dataset[0],
            self.cfg.preprocess.symbols_dict,
        )
        phone_symbols_file_to_exp_path = os.path.join(
            self.exp_dir, self.cfg.preprocess.symbols_dict
        )
        shutil.copy(phone_symbols_file, phone_symbols_file_to_exp_path)
        os.chmod(phone_symbols_file_to_exp_path, 0o666)
        print(
            "phone symbols been dumped to {}".format(
                os.path.join(self.exp_dir, self.cfg.preprocess.symbols_dict)
            )
        )