File size: 19,256 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# Copyright (c) 2024 Amphion.
#
# This code is modified from https://github.com/imdanboy/jets/blob/main/espnet2/gan_tts/jets/loss.py
# Licensed under Apache License 2.0

from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import librosa

from models.vocoders.gan.discriminator.mpd import MultiScaleMultiPeriodDiscriminator
from models.tts.jets.alignments import make_non_pad_mask, make_pad_mask


class GeneratorAdversarialLoss(torch.nn.Module):
    """Generator adversarial loss module."""

    def __init__(self):
        super().__init__()

    def forward(self, outputs) -> torch.Tensor:
        if isinstance(outputs, (tuple, list)):
            adv_loss = 0.0
            for i, outputs_ in enumerate(outputs):
                if isinstance(outputs_, (tuple, list)):
                    # NOTE(kan-bayashi): case including feature maps
                    outputs_ = outputs_[-1]
                adv_loss += F.mse_loss(outputs_, outputs_.new_ones(outputs_.size()))
        else:
            adv_loss = F.mse_loss(outputs, outputs.new_ones(outputs.size()))

        return adv_loss


class FeatureMatchLoss(torch.nn.Module):
    """Feature matching loss module."""

    def __init__(

        self,

        average_by_layers: bool = False,

        average_by_discriminators: bool = False,

        include_final_outputs: bool = True,

    ):
        """Initialize FeatureMatchLoss module.



        Args:

            average_by_layers (bool): Whether to average the loss by the number

                of layers.

            average_by_discriminators (bool): Whether to average the loss by

                the number of discriminators.

            include_final_outputs (bool): Whether to include the final output of

                each discriminator for loss calculation.



        """
        super().__init__()
        self.average_by_layers = average_by_layers
        self.average_by_discriminators = average_by_discriminators
        self.include_final_outputs = include_final_outputs

    def forward(

        self,

        feats_hat: Union[List[List[torch.Tensor]], List[torch.Tensor]],

        feats: Union[List[List[torch.Tensor]], List[torch.Tensor]],

    ) -> torch.Tensor:
        """Calculate feature matching loss.



        Args:

            feats_hat (Union[List[List[Tensor]], List[Tensor]]): List of list of

                discriminator outputs or list of discriminator outputs calcuated

                from generator's outputs.

            feats (Union[List[List[Tensor]], List[Tensor]]): List of list of

                discriminator outputs or list of discriminator outputs calcuated

                from groundtruth..



        Returns:

            Tensor: Feature matching loss value.



        """
        feat_match_loss = 0.0
        for i, (feats_hat_, feats_) in enumerate(zip(feats_hat, feats)):
            feat_match_loss_ = 0.0
            if not self.include_final_outputs:
                feats_hat_ = feats_hat_[:-1]
                feats_ = feats_[:-1]
            for j, (feat_hat_, feat_) in enumerate(zip(feats_hat_, feats_)):
                feat_match_loss_ += F.l1_loss(feat_hat_, feat_.detach())
            if self.average_by_layers:
                feat_match_loss_ /= j + 1
            feat_match_loss += feat_match_loss_
        if self.average_by_discriminators:
            feat_match_loss /= i + 1

        return feat_match_loss


class DurationPredictorLoss(torch.nn.Module):
    """Loss function module for duration predictor.



    The loss value is Calculated in log domain to make it Gaussian.



    """

    def __init__(self, offset=1.0, reduction="mean"):
        """Initilize duration predictor loss module.



        Args:

            offset (float, optional): Offset value to avoid nan in log domain.

            reduction (str): Reduction type in loss calculation.



        """
        super().__init__()
        self.criterion = torch.nn.MSELoss(reduction=reduction)
        self.offset = offset

    def forward(self, outputs, targets):
        targets = torch.log(targets.float() + self.offset)
        loss = self.criterion(outputs, targets)

        return loss


class VarianceLoss(torch.nn.Module):
    def __init__(self):
        """Initialize JETS variance loss module."""
        super().__init__()

        # define criterions
        reduction = "mean"
        self.mse_criterion = torch.nn.MSELoss(reduction=reduction)
        self.duration_criterion = DurationPredictorLoss(reduction=reduction)

    def forward(

        self,

        d_outs: torch.Tensor,

        ds: torch.Tensor,

        p_outs: torch.Tensor,

        ps: torch.Tensor,

        e_outs: torch.Tensor,

        es: torch.Tensor,

        ilens: torch.Tensor,

    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """Calculate forward propagation.



        Args:

            d_outs (LongTensor): Batch of outputs of duration predictor (B, T_text).

            ds (LongTensor): Batch of durations (B, T_text).

            p_outs (Tensor): Batch of outputs of pitch predictor (B, T_text, 1).

            ps (Tensor): Batch of target token-averaged pitch (B, T_text, 1).

            e_outs (Tensor): Batch of outputs of energy predictor (B, T_text, 1).

            es (Tensor): Batch of target token-averaged energy (B, T_text, 1).

            ilens (LongTensor): Batch of the lengths of each input (B,).



        Returns:

            Tensor: Duration predictor loss value.

            Tensor: Pitch predictor loss value.

            Tensor: Energy predictor loss value.



        """
        # apply mask to remove padded part
        duration_masks = make_non_pad_mask(ilens).to(ds.device)
        d_outs = d_outs.masked_select(duration_masks)
        ds = ds.masked_select(duration_masks)
        pitch_masks = make_non_pad_mask(ilens).to(ds.device)
        pitch_masks_ = make_non_pad_mask(ilens).unsqueeze(-1).to(ds.device)
        p_outs = p_outs.masked_select(pitch_masks)
        e_outs = e_outs.masked_select(pitch_masks)
        ps = ps.masked_select(pitch_masks_)
        es = es.masked_select(pitch_masks_)

        # calculate loss
        duration_loss = self.duration_criterion(d_outs, ds)
        pitch_loss = self.mse_criterion(p_outs, ps)
        energy_loss = self.mse_criterion(e_outs, es)

        return duration_loss, pitch_loss, energy_loss


class ForwardSumLoss(torch.nn.Module):
    """Forwardsum loss described at https://openreview.net/forum?id=0NQwnnwAORi"""

    def __init__(self):
        """Initialize forwardsum loss module."""
        super().__init__()

    def forward(

        self,

        log_p_attn: torch.Tensor,

        ilens: torch.Tensor,

        olens: torch.Tensor,

        blank_prob: float = np.e**-1,

    ) -> torch.Tensor:
        """Calculate forward propagation.



        Args:

            log_p_attn (Tensor): Batch of log probability of attention matrix

                (B, T_feats, T_text).

            ilens (Tensor): Batch of the lengths of each input (B,).

            olens (Tensor): Batch of the lengths of each target (B,).

            blank_prob (float): Blank symbol probability.



        Returns:

            Tensor: forwardsum loss value.



        """
        B = log_p_attn.size(0)

        # a row must be added to the attention matrix to account for
        #    blank token of CTC loss
        # (B,T_feats,T_text+1)
        log_p_attn_pd = F.pad(log_p_attn, (1, 0, 0, 0, 0, 0), value=np.log(blank_prob))

        loss = 0
        for bidx in range(B):
            # construct target sequnece.
            # Every text token is mapped to a unique sequnece number.
            target_seq = torch.arange(1, ilens[bidx] + 1).unsqueeze(0)
            cur_log_p_attn_pd = log_p_attn_pd[
                bidx, : olens[bidx], : ilens[bidx] + 1
            ].unsqueeze(
                1
            )  # (T_feats,1,T_text+1)
            cur_log_p_attn_pd = F.log_softmax(cur_log_p_attn_pd, dim=-1)
            loss += F.ctc_loss(
                log_probs=cur_log_p_attn_pd,
                targets=target_seq,
                input_lengths=olens[bidx : bidx + 1],
                target_lengths=ilens[bidx : bidx + 1],
                zero_infinity=True,
            )
        loss = loss / B
        return loss


class MelSpectrogramLoss(torch.nn.Module):
    """Mel-spectrogram loss."""

    def __init__(

        self,

        fs: int = 22050,

        n_fft: int = 1024,

        hop_length: int = 256,

        win_length: Optional[int] = None,

        window: str = "hann",

        n_mels: int = 80,

        fmin: Optional[int] = 0,

        fmax: Optional[int] = None,

        center: bool = True,

        normalized: bool = False,

        onesided: bool = True,

        htk: bool = False,

    ):
        """Initialize Mel-spectrogram loss.



        Args:

            fs (int): Sampling rate.

            n_fft (int): FFT points.

            hop_length (int): Hop length.

            win_length (Optional[int]): Window length.

            window (str): Window type.

            n_mels (int): Number of Mel basis.

            fmin (Optional[int]): Minimum frequency for Mel.

            fmax (Optional[int]): Maximum frequency for Mel.

            center (bool): Whether to use center window.

            normalized (bool): Whether to use normalized one.

            onesided (bool): Whether to use oneseded one.



        """
        super().__init__()

        self.fs = fs
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = n_fft
        self.window = window
        self.n_mels = n_mels
        self.fmin = 0 if fmin is None else fmin
        self.fmax = fs / 2 if fmax is None else fmax
        self.center = center
        self.normalized = normalized
        self.onesided = onesided
        self.htk = htk

    def logmel(self, feat, ilens):
        mel_options = dict(
            sr=self.fs,
            n_fft=self.n_fft,
            n_mels=self.n_mels,
            fmin=self.fmin,
            fmax=self.fmax,
            htk=self.htk,
        )
        melmat = librosa.filters.mel(**mel_options)
        melmat = torch.from_numpy(melmat.T).float().to(feat.device)
        mel_feat = torch.matmul(feat, melmat)
        mel_feat = torch.clamp(mel_feat, min=1e-10)
        logmel_feat = mel_feat.log10()

        # Zero padding
        if ilens is not None:
            logmel_feat = logmel_feat.masked_fill(
                make_pad_mask(ilens, logmel_feat, 1), 0.0
            )
        else:
            ilens = feat.new_full(
                [feat.size(0)], fill_value=feat.size(1), dtype=torch.long
            )
        return logmel_feat

    def wav_to_mel(self, input, input_lengths=None):
        if self.window is not None:
            window_func = getattr(torch, f"{self.window}_window")
            window = window_func(
                self.win_length, dtype=input.dtype, device=input.device
            )

        stft_kwargs = dict(
            n_fft=self.n_fft,
            win_length=self.win_length,
            hop_length=self.hop_length,
            center=self.center,
            window=window,
            normalized=self.normalized,
            onesided=self.onesided,
            return_complex=True,
        )

        bs = input.size(0)
        if input.dim() == 3:
            multi_channel = True
            # input: (Batch, Nsample, Channels) -> (Batch * Channels, Nsample)
            input = input.transpose(1, 2).reshape(-1, input.size(1))
        else:
            multi_channel = False

        input_stft = torch.stft(input, **stft_kwargs)
        input_stft = torch.view_as_real(input_stft)
        input_stft = input_stft.transpose(1, 2)
        if multi_channel:
            input_stft = input_stft.view(
                bs, -1, input_stft.size(1), input_stft.size(2), 2
            ).transpose(1, 2)
        if input_lengths is not None:
            if self.center:
                pad = self.n_fft // 2
                input_lengths = input_lengths + 2 * pad

            feats_lens = (input_lengths - self.n_fft) // self.hop_length + 1
            input_stft.masked_fill_(make_pad_mask(feats_lens, input_stft, 1), 0.0)
        else:
            feats_lens = None
        input_power = input_stft[..., 0] ** 2 + input_stft[..., 1] ** 2
        input_amp = torch.sqrt(torch.clamp(input_power, min=1.0e-10))
        input_feats = self.logmel(input_amp, feats_lens)
        return input_feats, feats_lens

    def forward(

        self,

        y_hat: torch.Tensor,

        y: torch.Tensor,

    ) -> torch.Tensor:
        mel_hat, _ = self.wav_to_mel(y_hat.squeeze(1))
        mel, _ = self.wav_to_mel(y.squeeze(1))
        mel_loss = F.l1_loss(mel_hat, mel)

        return mel_loss


class GeneratorLoss(nn.Module):
    """The total loss of the generator"""

    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg

        self.mel_loss = MelSpectrogramLoss()
        self.generator_adv_loss = GeneratorAdversarialLoss()
        self.feat_match_loss = FeatureMatchLoss()
        self.var_loss = VarianceLoss()
        self.forwardsum_loss = ForwardSumLoss()

        self.lambda_adv = 1.0
        self.lambda_mel = 45.0
        self.lambda_feat_match = 2.0
        self.lambda_var = 1.0
        self.lambda_align = 2.0

    def forward(self, outputs_g, outputs_d, speech_):
        loss_g = {}

        # parse generator output
        (
            speech_hat_,
            bin_loss,
            log_p_attn,
            start_idxs,
            d_outs,
            ds,
            p_outs,
            ps,
            e_outs,
            es,
            text_lengths,
            feats_lengths,
        ) = outputs_g

        # parse discriminator output
        (p_hat, p) = outputs_d

        # calculate losses
        mel_loss = self.mel_loss(speech_hat_, speech_)
        adv_loss = self.generator_adv_loss(p_hat)
        feat_match_loss = self.feat_match_loss(p_hat, p)
        dur_loss, pitch_loss, energy_loss = self.var_loss(
            d_outs, ds, p_outs, ps, e_outs, es, text_lengths
        )
        forwardsum_loss = self.forwardsum_loss(log_p_attn, text_lengths, feats_lengths)

        # calculate total loss
        mel_loss = mel_loss * self.lambda_mel
        loss_g["mel_loss"] = mel_loss
        adv_loss = adv_loss * self.lambda_adv
        loss_g["adv_loss"] = adv_loss
        feat_match_loss = feat_match_loss * self.lambda_feat_match
        loss_g["feat_match_loss"] = feat_match_loss
        g_loss = mel_loss + adv_loss + feat_match_loss
        loss_g["g_loss"] = g_loss
        var_loss = (dur_loss + pitch_loss + energy_loss) * self.lambda_var
        loss_g["var_loss"] = var_loss
        align_loss = (forwardsum_loss + bin_loss) * self.lambda_align
        loss_g["align_loss"] = align_loss

        g_total_loss = g_loss + var_loss + align_loss

        loss_g["g_total_loss"] = g_total_loss

        return loss_g


class DiscriminatorAdversarialLoss(torch.nn.Module):
    """Discriminator adversarial loss module."""

    def __init__(

        self,

        average_by_discriminators: bool = True,

        loss_type: str = "mse",

    ):
        """Initialize DiscriminatorAversarialLoss module.



        Args:

            average_by_discriminators (bool): Whether to average the loss by

                the number of discriminators.

            loss_type (str): Loss type, "mse" or "hinge".



        """
        super().__init__()
        self.average_by_discriminators = average_by_discriminators
        assert loss_type in ["mse", "hinge"], f"{loss_type} is not supported."
        if loss_type == "mse":
            self.fake_criterion = self._mse_fake_loss
            self.real_criterion = self._mse_real_loss
        else:
            self.fake_criterion = self._hinge_fake_loss
            self.real_criterion = self._hinge_real_loss

    def forward(

        self,

        outputs_hat: Union[List[List[torch.Tensor]], List[torch.Tensor], torch.Tensor],

        outputs: Union[List[List[torch.Tensor]], List[torch.Tensor], torch.Tensor],

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Calcualate discriminator adversarial loss.



        Args:

            outputs_hat (Union[List[List[Tensor]], List[Tensor], Tensor]): Discriminator

                outputs, list of discriminator outputs, or list of list of discriminator

                outputs calculated from generator.

            outputs (Union[List[List[Tensor]], List[Tensor], Tensor]): Discriminator

                outputs, list of discriminator outputs, or list of list of discriminator

                outputs calculated from groundtruth.



        Returns:

            Tensor: Discriminator real loss value.

            Tensor: Discriminator fake loss value.



        """
        if isinstance(outputs, (tuple, list)):
            real_loss = 0.0
            fake_loss = 0.0
            for i, (outputs_hat_, outputs_) in enumerate(zip(outputs_hat, outputs)):
                if isinstance(outputs_hat_, (tuple, list)):
                    # NOTE(kan-bayashi): case including feature maps
                    outputs_hat_ = outputs_hat_[-1]
                    outputs_ = outputs_[-1]
                real_loss += self.real_criterion(outputs_)
                fake_loss += self.fake_criterion(outputs_hat_)
            if self.average_by_discriminators:
                fake_loss /= i + 1
                real_loss /= i + 1
        else:
            real_loss = self.real_criterion(outputs)
            fake_loss = self.fake_criterion(outputs_hat)

        return real_loss, fake_loss

    def _mse_real_loss(self, x: torch.Tensor) -> torch.Tensor:
        return F.mse_loss(x, x.new_ones(x.size()))

    def _mse_fake_loss(self, x: torch.Tensor) -> torch.Tensor:
        return F.mse_loss(x, x.new_zeros(x.size()))

    def _hinge_real_loss(self, x: torch.Tensor) -> torch.Tensor:
        return -torch.mean(torch.min(x - 1, x.new_zeros(x.size())))

    def _hinge_fake_loss(self, x: torch.Tensor) -> torch.Tensor:
        return -torch.mean(torch.min(-x - 1, x.new_zeros(x.size())))


class DiscriminatorLoss(torch.nn.Module):
    """The total loss of the discriminator"""

    def __init__(self, cfg):
        super(DiscriminatorLoss, self).__init__()
        self.cfg = cfg
        self.discriminator = MultiScaleMultiPeriodDiscriminator()
        self.discriminator_adv_loss = DiscriminatorAdversarialLoss()

    def forward(self, speech_real, speech_generated):
        loss_d = {}

        real_loss, fake_loss = self.discriminator_adv_loss(
            speech_generated, speech_real
        )
        loss_d["loss_disc_all"] = real_loss + fake_loss

        return loss_d