File size: 12,155 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
import os
from utils.io import save_audio
from tqdm import tqdm
from models.tts.base import TTSTrainer
from models.tts.jets.jets import Jets
from models.tts.jets.jets_loss import GeneratorLoss, DiscriminatorLoss
from models.tts.jets.jets_dataset import JetsDataset, JetsCollator
from optimizer.optimizers import NoamLR
from torch.optim.lr_scheduler import ExponentialLR
from models.vocoders.gan.discriminator.mpd import MultiScaleMultiPeriodDiscriminator


def get_segments(
    x: torch.Tensor,
    start_idxs: torch.Tensor,
    segment_size: int,
) -> torch.Tensor:
    """Get segments.

    Args:
        x (Tensor): Input tensor (B, C, T).
        start_idxs (Tensor): Start index tensor (B,).
        segment_size (int): Segment size.

    Returns:
        Tensor: Segmented tensor (B, C, segment_size).

    """
    b, c, t = x.size()
    segments = x.new_zeros(b, c, segment_size)
    for i, start_idx in enumerate(start_idxs):
        segments[i] = x[i, :, start_idx : start_idx + segment_size]
    return segments


class JetsTrainer(TTSTrainer):
    def __init__(self, args, cfg):
        TTSTrainer.__init__(self, args, cfg)
        self.cfg = cfg

    def _build_dataset(self):
        return JetsDataset, JetsCollator

    def __build_scheduler(self):
        return NoamLR(self.optimizer, **self.cfg.train.lr_scheduler)

    def _write_summary(
        self,
        losses,
        stats,
        images={},
        audios={},
        audio_sampling_rate=24000,
        tag="train",
    ):
        for key, value in losses.items():
            self.sw.add_scalar(tag + "/" + key, value, self.step)
        self.sw.add_scalar(
            "learning_rate",
            self.optimizer["optimizer_g"].param_groups[0]["lr"],
            self.step,
        )

        if len(images) != 0:
            for key, value in images.items():
                self.sw.add_image(key, value, self.global_step, batchformats="HWC")
        if len(audios) != 0:
            for key, value in audios.items():
                self.sw.add_audio(key, value, self.global_step, audio_sampling_rate)

        for key, value in losses.items():
            self.sw.add_scalar("train/" + key, value, self.step)
        lr = self.optimizer.state_dict()["param_groups"][0]["lr"]
        self.sw.add_scalar("learning_rate", lr, self.step)

    def _write_valid_summary(
        self, losses, stats, images={}, audios={}, audio_sampling_rate=24000, tag="val"
    ):
        for key, value in losses.items():
            self.sw.add_scalar(tag + "/" + key, value, self.step)

        if len(images) != 0:
            for key, value in images.items():
                self.sw.add_image(key, value, self.global_step, batchformats="HWC")
        if len(audios) != 0:
            for key, value in audios.items():
                self.sw.add_audio(key, value, self.global_step, audio_sampling_rate)

    def _build_criterion(self):
        criterion = {
            "generator": GeneratorLoss(self.cfg),
            "discriminator": DiscriminatorLoss(self.cfg),
        }
        return criterion

    def get_state_dict(self):
        state_dict = {
            "generator": self.model["generator"].state_dict(),
            "discriminator": self.model["discriminator"].state_dict(),
            "optimizer_g": self.optimizer["optimizer_g"].state_dict(),
            "optimizer_d": self.optimizer["optimizer_d"].state_dict(),
            "scheduler_g": self.scheduler["scheduler_g"].state_dict(),
            "scheduler_d": self.scheduler["scheduler_d"].state_dict(),
            "step": self.step,
            "epoch": self.epoch,
            "batch_size": self.cfg.train.batch_size,
        }
        return state_dict

    def _build_optimizer(self):
        optimizer_g = torch.optim.AdamW(
            self.model["generator"].parameters(),
            self.cfg.train.learning_rate,
            betas=self.cfg.train.AdamW.betas,
            eps=self.cfg.train.AdamW.eps,
        )
        optimizer_d = torch.optim.AdamW(
            self.model["discriminator"].parameters(),
            self.cfg.train.learning_rate,
            betas=self.cfg.train.AdamW.betas,
            eps=self.cfg.train.AdamW.eps,
        )
        optimizer = {"optimizer_g": optimizer_g, "optimizer_d": optimizer_d}

        return optimizer

    def _build_scheduler(self):
        scheduler_g = ExponentialLR(
            self.optimizer["optimizer_g"],
            gamma=self.cfg.train.lr_decay,
            last_epoch=self.epoch - 1,
        )
        scheduler_d = ExponentialLR(
            self.optimizer["optimizer_d"],
            gamma=self.cfg.train.lr_decay,
            last_epoch=self.epoch - 1,
        )

        scheduler = {"scheduler_g": scheduler_g, "scheduler_d": scheduler_d}
        return scheduler

    def _build_model(self):
        net_g = Jets(self.cfg)
        net_d = MultiScaleMultiPeriodDiscriminator()
        self.model = {"generator": net_g, "discriminator": net_d}
        return self.model

    def _train_epoch(self):
        r"""Training epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        self.model["generator"].train()
        self.model["discriminator"].train()
        epoch_sum_loss: float = 0.0
        epoch_losses: dict = {}
        epoch_step: int = 0
        for batch in tqdm(
            self.train_dataloader,
            desc=f"Training Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            with self.accelerator.accumulate(self.model):
                if batch["target_len"].min() < self.cfg.train.segment_size:
                    continue
                total_loss, train_losses, training_stats = self._train_step(batch)
            self.batch_count += 1

            if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
                epoch_sum_loss += total_loss
                for key, value in train_losses.items():
                    if key not in epoch_losses.keys():
                        epoch_losses[key] = value
                    else:
                        epoch_losses[key] += value

                    self.accelerator.log(
                        {
                            "Step/Train {} Loss".format(key): value,
                        },
                        step=self.step,
                    )

                self.step += 1
                epoch_step += 1

        self.accelerator.wait_for_everyone()

        epoch_sum_loss = (
            epoch_sum_loss
            / len(self.train_dataloader)
            * self.cfg.train.gradient_accumulation_step
        )

        for key in epoch_losses.keys():
            epoch_losses[key] = (
                epoch_losses[key]
                / len(self.train_dataloader)
                * self.cfg.train.gradient_accumulation_step
            )

        return epoch_sum_loss, epoch_losses

    def _train_step(self, batch):
        train_losses = {}
        total_loss = 0
        training_stats = {}

        # Train Discriminator
        # Generator output
        outputs_g = self.model["generator"](batch)
        speech_hat_, _, _, start_idxs, *_ = outputs_g

        # Discriminator output
        speech = batch["audio"].unsqueeze(1)
        upsample_factor = self.cfg.train.upsample_factor
        speech_ = get_segments(
            x=speech,
            start_idxs=start_idxs * upsample_factor,
            segment_size=self.cfg.train.segment_size * upsample_factor,
        )
        p_hat = self.model["discriminator"](speech_hat_.detach())
        p = self.model["discriminator"](speech_)

        # Discriminator loss
        loss_d = self.criterion["discriminator"](p, p_hat)
        train_losses.update(loss_d)

        # BP and Grad Updated
        self.optimizer["optimizer_d"].zero_grad()
        self.accelerator.backward(loss_d["loss_disc_all"])
        self.optimizer["optimizer_d"].step()

        # Train Generator
        p_hat = self.model["discriminator"](speech_hat_)
        with torch.no_grad():
            p = self.model["discriminator"](speech_)

        outputs_d = (p_hat, p)
        loss_g = self.criterion["generator"](outputs_g, outputs_d, speech_)
        train_losses.update(loss_g)

        # BP and Grad Updated
        self.optimizer["optimizer_g"].zero_grad()
        self.accelerator.backward(loss_g["g_total_loss"])
        self.optimizer["optimizer_g"].step()

        for item in train_losses:
            train_losses[item] = train_losses[item].item()

        total_loss = loss_g["g_total_loss"] + loss_d["loss_disc_all"]

        return (
            total_loss.item(),
            train_losses,
            training_stats,
        )

    @torch.inference_mode()
    def _valid_step(self, batch):
        valid_losses = {}
        total_loss = 0
        valid_stats = {}

        # Discriminator
        # Generator output
        outputs_g = self.model["generator"](batch)
        speech_hat_, _, _, start_idxs, *_ = outputs_g

        # Discriminator output
        speech = batch["audio"].unsqueeze(1)
        upsample_factor = self.cfg.train.upsample_factor
        speech_ = get_segments(
            x=speech,
            start_idxs=start_idxs * upsample_factor,
            segment_size=self.cfg.train.segment_size * upsample_factor,
        )
        p_hat = self.model["discriminator"](speech_hat_.detach())
        p = self.model["discriminator"](speech_)

        # Discriminator loss
        loss_d = self.criterion["discriminator"](p, p_hat)
        valid_losses.update(loss_d)

        # Generator loss
        p_hat = self.model["discriminator"](speech_hat_)
        with torch.no_grad():
            p = self.model["discriminator"](speech_)

        outputs_d = (p_hat, p)
        loss_g = self.criterion["generator"](outputs_g, outputs_d, speech_)
        valid_losses.update(loss_g)

        for item in valid_losses:
            valid_losses[item] = valid_losses[item].item()

        total_loss = loss_g["g_total_loss"] + loss_d["loss_disc_all"]

        return (
            total_loss.item(),
            valid_losses,
            valid_stats,
        )

    @torch.inference_mode()
    def _valid_epoch(self):
        r"""Testing epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        if isinstance(self.model, dict):
            for key in self.model.keys():
                self.model[key].eval()
        else:
            self.model.eval()

        epoch_sum_loss = 0.0
        epoch_losses = dict()
        for batch in tqdm(
            self.valid_dataloader,
            desc=f"Validating Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            total_loss, valid_losses, valid_stats = self._valid_step(batch)
            epoch_sum_loss += total_loss
            if isinstance(valid_losses, dict):
                for key, value in valid_losses.items():
                    if key not in epoch_losses.keys():
                        epoch_losses[key] = value
                    else:
                        epoch_losses[key] += value

                    self.accelerator.log(
                        {
                            "Step/Valid {} Loss".format(key): value,
                        },
                        step=self.step,
                    )

        epoch_sum_loss = epoch_sum_loss / len(self.valid_dataloader)
        for key in epoch_losses.keys():
            epoch_losses[key] = epoch_losses[key] / len(self.valid_dataloader)

        self.accelerator.wait_for_everyone()

        return epoch_sum_loss, epoch_losses