Spaces:
Runtime error
Runtime error
File size: 12,155 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import os
from utils.io import save_audio
from tqdm import tqdm
from models.tts.base import TTSTrainer
from models.tts.jets.jets import Jets
from models.tts.jets.jets_loss import GeneratorLoss, DiscriminatorLoss
from models.tts.jets.jets_dataset import JetsDataset, JetsCollator
from optimizer.optimizers import NoamLR
from torch.optim.lr_scheduler import ExponentialLR
from models.vocoders.gan.discriminator.mpd import MultiScaleMultiPeriodDiscriminator
def get_segments(
x: torch.Tensor,
start_idxs: torch.Tensor,
segment_size: int,
) -> torch.Tensor:
"""Get segments.
Args:
x (Tensor): Input tensor (B, C, T).
start_idxs (Tensor): Start index tensor (B,).
segment_size (int): Segment size.
Returns:
Tensor: Segmented tensor (B, C, segment_size).
"""
b, c, t = x.size()
segments = x.new_zeros(b, c, segment_size)
for i, start_idx in enumerate(start_idxs):
segments[i] = x[i, :, start_idx : start_idx + segment_size]
return segments
class JetsTrainer(TTSTrainer):
def __init__(self, args, cfg):
TTSTrainer.__init__(self, args, cfg)
self.cfg = cfg
def _build_dataset(self):
return JetsDataset, JetsCollator
def __build_scheduler(self):
return NoamLR(self.optimizer, **self.cfg.train.lr_scheduler)
def _write_summary(
self,
losses,
stats,
images={},
audios={},
audio_sampling_rate=24000,
tag="train",
):
for key, value in losses.items():
self.sw.add_scalar(tag + "/" + key, value, self.step)
self.sw.add_scalar(
"learning_rate",
self.optimizer["optimizer_g"].param_groups[0]["lr"],
self.step,
)
if len(images) != 0:
for key, value in images.items():
self.sw.add_image(key, value, self.global_step, batchformats="HWC")
if len(audios) != 0:
for key, value in audios.items():
self.sw.add_audio(key, value, self.global_step, audio_sampling_rate)
for key, value in losses.items():
self.sw.add_scalar("train/" + key, value, self.step)
lr = self.optimizer.state_dict()["param_groups"][0]["lr"]
self.sw.add_scalar("learning_rate", lr, self.step)
def _write_valid_summary(
self, losses, stats, images={}, audios={}, audio_sampling_rate=24000, tag="val"
):
for key, value in losses.items():
self.sw.add_scalar(tag + "/" + key, value, self.step)
if len(images) != 0:
for key, value in images.items():
self.sw.add_image(key, value, self.global_step, batchformats="HWC")
if len(audios) != 0:
for key, value in audios.items():
self.sw.add_audio(key, value, self.global_step, audio_sampling_rate)
def _build_criterion(self):
criterion = {
"generator": GeneratorLoss(self.cfg),
"discriminator": DiscriminatorLoss(self.cfg),
}
return criterion
def get_state_dict(self):
state_dict = {
"generator": self.model["generator"].state_dict(),
"discriminator": self.model["discriminator"].state_dict(),
"optimizer_g": self.optimizer["optimizer_g"].state_dict(),
"optimizer_d": self.optimizer["optimizer_d"].state_dict(),
"scheduler_g": self.scheduler["scheduler_g"].state_dict(),
"scheduler_d": self.scheduler["scheduler_d"].state_dict(),
"step": self.step,
"epoch": self.epoch,
"batch_size": self.cfg.train.batch_size,
}
return state_dict
def _build_optimizer(self):
optimizer_g = torch.optim.AdamW(
self.model["generator"].parameters(),
self.cfg.train.learning_rate,
betas=self.cfg.train.AdamW.betas,
eps=self.cfg.train.AdamW.eps,
)
optimizer_d = torch.optim.AdamW(
self.model["discriminator"].parameters(),
self.cfg.train.learning_rate,
betas=self.cfg.train.AdamW.betas,
eps=self.cfg.train.AdamW.eps,
)
optimizer = {"optimizer_g": optimizer_g, "optimizer_d": optimizer_d}
return optimizer
def _build_scheduler(self):
scheduler_g = ExponentialLR(
self.optimizer["optimizer_g"],
gamma=self.cfg.train.lr_decay,
last_epoch=self.epoch - 1,
)
scheduler_d = ExponentialLR(
self.optimizer["optimizer_d"],
gamma=self.cfg.train.lr_decay,
last_epoch=self.epoch - 1,
)
scheduler = {"scheduler_g": scheduler_g, "scheduler_d": scheduler_d}
return scheduler
def _build_model(self):
net_g = Jets(self.cfg)
net_d = MultiScaleMultiPeriodDiscriminator()
self.model = {"generator": net_g, "discriminator": net_d}
return self.model
def _train_epoch(self):
r"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.model["generator"].train()
self.model["discriminator"].train()
epoch_sum_loss: float = 0.0
epoch_losses: dict = {}
epoch_step: int = 0
for batch in tqdm(
self.train_dataloader,
desc=f"Training Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
with self.accelerator.accumulate(self.model):
if batch["target_len"].min() < self.cfg.train.segment_size:
continue
total_loss, train_losses, training_stats = self._train_step(batch)
self.batch_count += 1
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
epoch_sum_loss += total_loss
for key, value in train_losses.items():
if key not in epoch_losses.keys():
epoch_losses[key] = value
else:
epoch_losses[key] += value
self.accelerator.log(
{
"Step/Train {} Loss".format(key): value,
},
step=self.step,
)
self.step += 1
epoch_step += 1
self.accelerator.wait_for_everyone()
epoch_sum_loss = (
epoch_sum_loss
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
for key in epoch_losses.keys():
epoch_losses[key] = (
epoch_losses[key]
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
return epoch_sum_loss, epoch_losses
def _train_step(self, batch):
train_losses = {}
total_loss = 0
training_stats = {}
# Train Discriminator
# Generator output
outputs_g = self.model["generator"](batch)
speech_hat_, _, _, start_idxs, *_ = outputs_g
# Discriminator output
speech = batch["audio"].unsqueeze(1)
upsample_factor = self.cfg.train.upsample_factor
speech_ = get_segments(
x=speech,
start_idxs=start_idxs * upsample_factor,
segment_size=self.cfg.train.segment_size * upsample_factor,
)
p_hat = self.model["discriminator"](speech_hat_.detach())
p = self.model["discriminator"](speech_)
# Discriminator loss
loss_d = self.criterion["discriminator"](p, p_hat)
train_losses.update(loss_d)
# BP and Grad Updated
self.optimizer["optimizer_d"].zero_grad()
self.accelerator.backward(loss_d["loss_disc_all"])
self.optimizer["optimizer_d"].step()
# Train Generator
p_hat = self.model["discriminator"](speech_hat_)
with torch.no_grad():
p = self.model["discriminator"](speech_)
outputs_d = (p_hat, p)
loss_g = self.criterion["generator"](outputs_g, outputs_d, speech_)
train_losses.update(loss_g)
# BP and Grad Updated
self.optimizer["optimizer_g"].zero_grad()
self.accelerator.backward(loss_g["g_total_loss"])
self.optimizer["optimizer_g"].step()
for item in train_losses:
train_losses[item] = train_losses[item].item()
total_loss = loss_g["g_total_loss"] + loss_d["loss_disc_all"]
return (
total_loss.item(),
train_losses,
training_stats,
)
@torch.inference_mode()
def _valid_step(self, batch):
valid_losses = {}
total_loss = 0
valid_stats = {}
# Discriminator
# Generator output
outputs_g = self.model["generator"](batch)
speech_hat_, _, _, start_idxs, *_ = outputs_g
# Discriminator output
speech = batch["audio"].unsqueeze(1)
upsample_factor = self.cfg.train.upsample_factor
speech_ = get_segments(
x=speech,
start_idxs=start_idxs * upsample_factor,
segment_size=self.cfg.train.segment_size * upsample_factor,
)
p_hat = self.model["discriminator"](speech_hat_.detach())
p = self.model["discriminator"](speech_)
# Discriminator loss
loss_d = self.criterion["discriminator"](p, p_hat)
valid_losses.update(loss_d)
# Generator loss
p_hat = self.model["discriminator"](speech_hat_)
with torch.no_grad():
p = self.model["discriminator"](speech_)
outputs_d = (p_hat, p)
loss_g = self.criterion["generator"](outputs_g, outputs_d, speech_)
valid_losses.update(loss_g)
for item in valid_losses:
valid_losses[item] = valid_losses[item].item()
total_loss = loss_g["g_total_loss"] + loss_d["loss_disc_all"]
return (
total_loss.item(),
valid_losses,
valid_stats,
)
@torch.inference_mode()
def _valid_epoch(self):
r"""Testing epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key].eval()
else:
self.model.eval()
epoch_sum_loss = 0.0
epoch_losses = dict()
for batch in tqdm(
self.valid_dataloader,
desc=f"Validating Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
total_loss, valid_losses, valid_stats = self._valid_step(batch)
epoch_sum_loss += total_loss
if isinstance(valid_losses, dict):
for key, value in valid_losses.items():
if key not in epoch_losses.keys():
epoch_losses[key] = value
else:
epoch_losses[key] += value
self.accelerator.log(
{
"Step/Valid {} Loss".format(key): value,
},
step=self.step,
)
epoch_sum_loss = epoch_sum_loss / len(self.valid_dataloader)
for key in epoch_losses.keys():
epoch_losses[key] = epoch_losses[key] / len(self.valid_dataloader)
self.accelerator.wait_for_everyone()
return epoch_sum_loss, epoch_losses
|