File size: 6,959 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
## This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

"""Encoder self-attention layer definition."""

from typing import Optional, Tuple
import torch
from torch import nn


class StrideConformerEncoderLayer(nn.Module):
    """Encoder layer module.
    Args:
        size (int): Input dimension.
        self_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
            instance can be used as the argument.
        feed_forward (torch.nn.Module): Feed-forward module instance.
            `PositionwiseFeedForward` instance can be used as the argument.
        feed_forward_macaron (torch.nn.Module): Additional feed-forward module
             instance.
            `PositionwiseFeedForward` instance can be used as the argument.
        conv_module (torch.nn.Module): Convolution module instance.
            `ConvlutionModule` instance can be used as the argument.
        dropout_rate (float): Dropout rate.
        normalize_before (bool):
            True: use layer_norm before each sub-block.
            False: use layer_norm after each sub-block.
    """

    def __init__(
        self,
        size: int,
        self_attn: torch.nn.Module,
        feed_forward: Optional[nn.Module] = None,
        feed_forward_macaron: Optional[nn.Module] = None,
        conv_module: Optional[nn.Module] = None,
        pointwise_conv_layer: Optional[nn.Module] = None,
        dropout_rate: float = 0.1,
        normalize_before: bool = True,
    ):
        """Construct an EncoderLayer object."""
        super().__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.feed_forward_macaron = feed_forward_macaron
        self.conv_module = conv_module
        self.pointwise_conv_layer = pointwise_conv_layer
        self.norm_ff = nn.LayerNorm(size, eps=1e-5)  # for the FNN module
        self.norm_mha = nn.LayerNorm(size, eps=1e-5)  # for the MHA module
        if feed_forward_macaron is not None:
            self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
            self.ff_scale = 0.5
        else:
            self.ff_scale = 1.0
        if self.conv_module is not None:
            self.norm_conv = nn.LayerNorm(size, eps=1e-5)  # for the CNN module
            self.norm_final = nn.LayerNorm(
                size, eps=1e-5
            )  # for the final output of the block
        self.dropout = nn.Dropout(dropout_rate)
        self.size = size
        self.normalize_before = normalize_before
        self.concat_linear = nn.Linear(size + size, size)

    def forward(
        self,
        x: torch.Tensor,
        mask: torch.Tensor,
        pos_emb: torch.Tensor,
        mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
        cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """Compute encoded features.

        Args:
            x (torch.Tensor): (#batch, time, size)
            mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
                (0, 0, 0) means fake mask.
            pos_emb (torch.Tensor): positional encoding, must not be None
                for ConformerEncoderLayer.
            mask_pad (torch.Tensor): batch padding mask used for conv module.
                (#batch, 1,time), (0, 0, 0) means fake mask.
            att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
                (#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
            cnn_cache (torch.Tensor): Convolution cache in conformer layer
                (#batch=1, size, cache_t2)
        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time, time).
            torch.Tensor: att_cache tensor,
                (#batch=1, head, cache_t1 + time, d_k * 2).
            torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
        """

        # whether to use macaron style
        if self.feed_forward_macaron is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_ff_macaron(x)
            x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
            if not self.normalize_before:
                x = self.norm_ff_macaron(x)

        # multi-headed self-attention module
        residual = x
        if self.normalize_before:
            x = self.norm_mha(x)

        x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, att_cache)

        x = residual + self.dropout(x_att)
        if not self.normalize_before:
            x = self.norm_mha(x)

        # convolution module
        # Fake new cnn cache here, and then change it in conv_module
        new_cnn_cache = torch.tensor([0.0], dtype=x.dtype, device=x.device)
        if self.conv_module is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_conv(x)
            x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)

            # add pointwise_conv for efficient conformer
            #   pointwise_conv_layer does not change shape
            if self.pointwise_conv_layer is not None:
                residual = residual.transpose(1, 2)
                residual = self.pointwise_conv_layer(residual)
                residual = residual.transpose(1, 2)
                assert residual.size(0) == x.size(0)
                assert residual.size(1) == x.size(1)
                assert residual.size(2) == x.size(2)

            x = residual + self.dropout(x)

            if not self.normalize_before:
                x = self.norm_conv(x)

        # feed forward module
        residual = x
        if self.normalize_before:
            x = self.norm_ff(x)

        x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm_ff(x)

        if self.conv_module is not None:
            x = self.norm_final(x)

        return x, mask, new_att_cache, new_cnn_cache