Spaces:
Runtime error
Runtime error
File size: 6,959 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
## This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
"""Encoder self-attention layer definition."""
from typing import Optional, Tuple
import torch
from torch import nn
class StrideConformerEncoderLayer(nn.Module):
"""Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
instance can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward` instance can be used as the argument.
feed_forward_macaron (torch.nn.Module): Additional feed-forward module
instance.
`PositionwiseFeedForward` instance can be used as the argument.
conv_module (torch.nn.Module): Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
True: use layer_norm before each sub-block.
False: use layer_norm after each sub-block.
"""
def __init__(
self,
size: int,
self_attn: torch.nn.Module,
feed_forward: Optional[nn.Module] = None,
feed_forward_macaron: Optional[nn.Module] = None,
conv_module: Optional[nn.Module] = None,
pointwise_conv_layer: Optional[nn.Module] = None,
dropout_rate: float = 0.1,
normalize_before: bool = True,
):
"""Construct an EncoderLayer object."""
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.pointwise_conv_layer = pointwise_conv_layer
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module
self.norm_final = nn.LayerNorm(
size, eps=1e-5
) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_linear = nn.Linear(size + size, size)
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute encoded features.
Args:
x (torch.Tensor): (#batch, time, size)
mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
(0, 0, 0) means fake mask.
pos_emb (torch.Tensor): positional encoding, must not be None
for ConformerEncoderLayer.
mask_pad (torch.Tensor): batch padding mask used for conv module.
(#batch, 1,time), (0, 0, 0) means fake mask.
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
cnn_cache (torch.Tensor): Convolution cache in conformer layer
(#batch=1, size, cache_t2)
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time, time).
torch.Tensor: att_cache tensor,
(#batch=1, head, cache_t1 + time, d_k * 2).
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
"""
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
# multi-headed self-attention module
residual = x
if self.normalize_before:
x = self.norm_mha(x)
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, att_cache)
x = residual + self.dropout(x_att)
if not self.normalize_before:
x = self.norm_mha(x)
# convolution module
# Fake new cnn cache here, and then change it in conv_module
new_cnn_cache = torch.tensor([0.0], dtype=x.dtype, device=x.device)
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
# add pointwise_conv for efficient conformer
# pointwise_conv_layer does not change shape
if self.pointwise_conv_layer is not None:
residual = residual.transpose(1, 2)
residual = self.pointwise_conv_layer(residual)
residual = residual.transpose(1, 2)
assert residual.size(0) == x.size(0)
assert residual.size(1) == x.size(1)
assert residual.size(2) == x.size(2)
x = residual + self.dropout(x)
if not self.normalize_before:
x = self.norm_conv(x)
# feed forward module
residual = x
if self.normalize_before:
x = self.norm_ff(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm_ff(x)
if self.conv_module is not None:
x = self.norm_final(x)
return x, mask, new_att_cache, new_cnn_cache
|