Hecheng0625's picture
Upload 167 files
8c92a11 verified
raw
history blame
2.11 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import librosa
import numpy as np
from pypesq import pesq
def extract_pesq(audio_ref, audio_deg, **kwargs):
"""Extract PESQ for a two given audio.
audio1: the given reference audio. It is a numpy array.
audio2: the given synthesized audio. It is a numpy array.
fs: sampling rate.
method: "dtw" will use dtw algorithm to align the length of the ground truth and predicted audio.
"cut" will cut both audios into a same length according to the one with the shorter length.
"""
# Load hyperparameters
kwargs = kwargs["kwargs"]
fs = kwargs["fs"]
method = kwargs["method"]
# Load audio
if fs != None:
audio_ref, _ = librosa.load(audio_ref, sr=fs)
audio_deg, _ = librosa.load(audio_deg, sr=fs)
else:
audio_ref, fs = librosa.load(audio_ref)
audio_deg, fs = librosa.load(audio_deg)
# Resample
if fs != 16000:
audio_ref = librosa.resample(audio_ref, orig_sr=fs, target_sr=16000)
audio_deg = librosa.resample(audio_deg, orig_sr=fs, target_sr=16000)
fs = 16000
# Audio length alignment
if len(audio_ref) != len(audio_deg):
if method == "cut":
length = min(len(audio_ref), len(audio_deg))
audio_ref = audio_ref[:length]
audio_deg = audio_deg[:length]
elif method == "dtw":
_, wp = librosa.sequence.dtw(audio_ref, audio_deg, backtrack=True)
audio_ref_new = []
audio_deg_new = []
for i in range(wp.shape[0]):
ref_index = wp[i][0]
deg_index = wp[i][1]
audio_ref_new.append(audio_ref[ref_index])
audio_deg_new.append(audio_deg[deg_index])
audio_ref = np.array(audio_ref_new)
audio_deg = np.array(audio_deg_new)
assert len(audio_ref) == len(audio_deg)
# Compute pesq
score = pesq(audio_ref, audio_deg, fs)
return score