Spaces:
Runtime error
Runtime error
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
For source datasets' standard samples | |
""" | |
from collections import defaultdict | |
import os | |
import json | |
SPEECH_DATASETS = ["vctk", "vctksample"] | |
GOLDEN_TEST_SAMPLES = defaultdict(list) | |
GOLDEN_TEST_SAMPLES["m4singer"] = [ | |
"Alto-1_美错_0014", | |
"Bass-1_十年_0008", | |
"Soprano-2_同桌的你_0018", | |
"Tenor-5_爱笑的眼睛_0010", | |
] | |
GOLDEN_TEST_SAMPLES["svcc"] = [ | |
# IDF1 | |
"IDF1_10030", | |
"IDF1_10120", | |
"IDF1_10140", | |
# IDM1 | |
"IDM1_10001", | |
"IDM1_10030", | |
"IDM1_10120", | |
# CDF1 | |
"CDF1_10030", | |
"CDF1_10120", | |
"CDF1_10140", | |
# CDM1 | |
"CDM1_10001", | |
"CDM1_10030", | |
"CDM1_10120", | |
] | |
GOLDEN_TEST_SAMPLES["svcceval"] = [ | |
# SF1 | |
"SF1_30001", | |
"SF1_30002", | |
"SF1_30003", | |
# SM1 | |
"SM1_30001", | |
"SM1_30002", | |
"SM1_30003", | |
] | |
GOLDEN_TEST_SAMPLES["popbutfy"] = [ | |
"Female1#you_are_my_sunshine_Professional#0", | |
"Female4#Someone_Like_You_Professional#10", | |
"Male2#Lemon_Tree_Professional#12", | |
"Male5#can_you_feel_the_love_tonight_Professional#20", | |
] | |
GOLDEN_TEST_SAMPLES["opensinger"] = [ | |
"Man_0_大鱼_10", | |
"Man_21_丑八怪_14", | |
"Woman_39_mojito_22", | |
"Woman_40_易燃易爆炸_12", | |
] | |
GOLDEN_TEST_SAMPLES["nus48e"] = [ | |
"ADIZ_read#01#0000", | |
"MCUR_sing#10#0000", | |
"JLEE_read#08#0001", | |
"SAMF_sing#18#0001", | |
] | |
GOLDEN_TEST_SAMPLES["popcs"] = [ | |
"明天会更好_0004", | |
"欧若拉_0005", | |
"虫儿飞_0006", | |
"隐形的翅膀_0008", | |
] | |
GOLDEN_TEST_SAMPLES["kising"] = [ | |
"421_0040", | |
"424_0013", | |
"431_0026", | |
] | |
GOLDEN_TEST_SAMPLES["csd"] = [ | |
"en_004a_0001", | |
"en_042b_0006", | |
"kr_013a_0006", | |
"kr_045b_0004", | |
] | |
GOLDEN_TEST_SAMPLES["opera"] = [ | |
"fem_01#neg_1#0000", | |
"fem_12#pos_3#0003", | |
"male_02#neg_1#0002", | |
"male_11#pos_2#0001", | |
] | |
GOLDEN_TEST_SAMPLES["lijian"] = [ | |
"058矜持_0000", | |
"079绒花_0000", | |
"120遥远的天空底下_0000", | |
] | |
GOLDEN_TEST_SAMPLES["cdmusiceval"] = ["陶喆_普通朋友", "蔡琴_给电影人的情书"] | |
GOLDEN_TRAIN_SAMPLES = defaultdict(list) | |
def get_golden_samples_indexes( | |
dataset_name, | |
dataset_dir=None, | |
cfg=None, | |
split=None, | |
min_samples=5, | |
): | |
""" | |
# Get Standard samples' indexes | |
""" | |
if dataset_dir is None: | |
assert cfg is not None | |
dataset_dir = os.path.join( | |
cfg.OUTPUT_PATH, | |
"preprocess/{}_version".format(cfg.PREPROCESS_VERSION), | |
dataset_name, | |
) | |
assert split is not None | |
utt_file = os.path.join(dataset_dir, "{}.json".format(split)) | |
with open(utt_file, "r", encoding="utf-8") as f: | |
samples = json.load(f) | |
if "train" in split: | |
golden_samples = GOLDEN_TRAIN_SAMPLES[dataset_name] | |
if "test" in split: | |
golden_samples = GOLDEN_TEST_SAMPLES[dataset_name] | |
res = [] | |
for idx, utt in enumerate(samples): | |
if utt["Uid"] in golden_samples: | |
res.append(idx) | |
if dataset_name == "cdmusiceval": | |
if "_".join(utt["Uid"].split("_")[:2]) in golden_samples: | |
res.append(idx) | |
if len(res) == 0: | |
res = [i for i in range(min_samples)] | |
return res | |
def get_specific_singer_indexes(dataset_dir, singer_name, split): | |
utt_file = os.path.join(dataset_dir, "{}.json".format(split)) | |
with open(utt_file, "r", encoding="utf-8") as f: | |
samples = json.load(f) | |
res = [] | |
for idx, utt in enumerate(samples): | |
if utt["Singer"] == singer_name: | |
res.append(idx) | |
assert len(res) != 0 | |
return res | |
def get_uids_and_wav_paths( | |
cfg, dataset, dataset_type="train", only_specific_singer=None, return_singers=False | |
): | |
dataset_dir = os.path.join( | |
cfg.OUTPUT_PATH, "preprocess/{}_version".format(cfg.PREPROCESS_VERSION), dataset | |
) | |
dataset_file = os.path.join( | |
dataset_dir, "{}.json".format(dataset_type.split("_")[-1]) | |
) | |
with open(dataset_file, "r") as f: | |
utterances = json.load(f) | |
indexes = range(len(utterances)) | |
if "golden" in dataset_type: | |
# golden_train or golden_test | |
indexes = get_golden_samples_indexes( | |
dataset, dataset_dir, split=dataset_type.split("_")[-1] | |
) | |
if only_specific_singer is not None: | |
indexes = get_specific_singer_indexes( | |
dataset_dir, only_specific_singer, dataset_type | |
) | |
uids = [utterances[i]["Uid"] for i in indexes] | |
wav_paths = [utterances[i]["Path"] for i in indexes] | |
singers = [utterances[i]["Singer"] for i in indexes] | |
if not return_singers: | |
return uids, wav_paths | |
else: | |
return uids, wav_paths, singers | |