Hecheng0625's picture
Upload 409 files
c968fc3 verified
raw
history blame
11.1 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
from modules.vocoder_blocks import *
from modules.activation_functions import *
from modules.anti_aliasing import *
LRELU_SLOPE = 0.1
# The AMPBlock Module is adopted from BigVGAN under the MIT License
# https://github.com/NVIDIA/BigVGAN
class AMPBlock1(torch.nn.Module):
def __init__(
self, cfg, channels, kernel_size=3, dilation=(1, 3, 5), activation=None
):
super(AMPBlock1, self).__init__()
self.cfg = cfg
self.convs1 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(
self.convs2
) # total number of conv layers
if (
activation == "snake"
): # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList(
[
Activation1d(
activation=Snake(
channels, alpha_logscale=cfg.model.bigvgan.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
elif (
activation == "snakebeta"
): # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList(
[
Activation1d(
activation=SnakeBeta(
channels, alpha_logscale=cfg.model.bigvgan.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class AMPBlock2(torch.nn.Module):
def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3), activation=None):
super(AMPBlock2, self).__init__()
self.cfg = cfg
self.convs = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
]
)
self.convs.apply(init_weights)
self.num_layers = len(self.convs) # total number of conv layers
if (
activation == "snake"
): # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList(
[
Activation1d(
activation=Snake(
channels, alpha_logscale=cfg.model.bigvgan.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
elif (
activation == "snakebeta"
): # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList(
[
Activation1d(
activation=SnakeBeta(
channels, alpha_logscale=cfg.model.bigvgan.snake_logscale
)
)
for _ in range(self.num_layers)
]
)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
for c, a in zip(self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class BigVGAN(torch.nn.Module):
def __init__(self, cfg):
super(BigVGAN, self).__init__()
self.cfg = cfg
self.num_kernels = len(cfg.model.bigvgan.resblock_kernel_sizes)
self.num_upsamples = len(cfg.model.bigvgan.upsample_rates)
# Conv pre to boost channels
self.conv_pre = weight_norm(
Conv1d(
cfg.preprocess.n_mel,
cfg.model.bigvgan.upsample_initial_channel,
7,
1,
padding=3,
)
)
resblock = AMPBlock1 if cfg.model.bigvgan.resblock == "1" else AMPBlock2
# Upsamplers
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(
zip(
cfg.model.bigvgan.upsample_rates,
cfg.model.bigvgan.upsample_kernel_sizes,
)
):
self.ups.append(
nn.ModuleList(
[
weight_norm(
ConvTranspose1d(
cfg.model.bigvgan.upsample_initial_channel // (2**i),
cfg.model.bigvgan.upsample_initial_channel
// (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
]
)
)
# Res Blocks with AMP and Anti-aliasing
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = cfg.model.bigvgan.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(
cfg.model.bigvgan.resblock_kernel_sizes,
cfg.model.bigvgan.resblock_dilation_sizes,
)
):
self.resblocks.append(
resblock(cfg, ch, k, d, activation=cfg.model.bigvgan.activation)
)
# Conv post for result
if cfg.model.bigvgan.activation == "snake":
activation_post = Snake(ch, alpha_logscale=cfg.model.bigvgan.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
elif cfg.model.bigvgan.activation == "snakebeta":
activation_post = SnakeBeta(
ch, alpha_logscale=cfg.model.bigvgan.snake_logscale
)
self.activation_post = Activation1d(activation=activation_post)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
# Weight Norm
for i in range(len(self.ups)):
self.ups[i].apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print("Removing weight norm...")
for l in self.ups:
for l_i in l:
remove_weight_norm(l_i)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)