Spaces:
Runtime error
Runtime error
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import sys | |
import numpy as np | |
import json | |
import argparse | |
import whisper | |
import torch | |
from glob import glob | |
from tqdm import tqdm | |
from collections import defaultdict | |
from evaluation.metrics.energy.energy_rmse import extract_energy_rmse | |
from evaluation.metrics.energy.energy_pearson_coefficients import ( | |
extract_energy_pearson_coeffcients, | |
) | |
from evaluation.metrics.f0.f0_pearson_coefficients import extract_fpc | |
from evaluation.metrics.f0.f0_periodicity_rmse import extract_f0_periodicity_rmse | |
from evaluation.metrics.f0.f0_rmse import extract_f0rmse | |
from evaluation.metrics.f0.v_uv_f1 import extract_f1_v_uv | |
from evaluation.metrics.intelligibility.character_error_rate import extract_cer | |
from evaluation.metrics.intelligibility.word_error_rate import extract_wer | |
from evaluation.metrics.similarity.speaker_similarity import extract_similarity | |
from evaluation.metrics.spectrogram.frechet_distance import extract_fad | |
from evaluation.metrics.spectrogram.mel_cepstral_distortion import extract_mcd | |
from evaluation.metrics.spectrogram.multi_resolution_stft_distance import extract_mstft | |
from evaluation.metrics.spectrogram.pesq import extract_pesq | |
from evaluation.metrics.spectrogram.scale_invariant_signal_to_distortion_ratio import ( | |
extract_si_sdr, | |
) | |
from evaluation.metrics.spectrogram.scale_invariant_signal_to_noise_ratio import ( | |
extract_si_snr, | |
) | |
from evaluation.metrics.spectrogram.short_time_objective_intelligibility import ( | |
extract_stoi, | |
) | |
METRIC_FUNC = { | |
"energy_rmse": extract_energy_rmse, | |
"energy_pc": extract_energy_pearson_coeffcients, | |
"fpc": extract_fpc, | |
"f0_periodicity_rmse": extract_f0_periodicity_rmse, | |
"f0rmse": extract_f0rmse, | |
"v_uv_f1": extract_f1_v_uv, | |
"cer": extract_cer, | |
"wer": extract_wer, | |
"similarity": extract_similarity, | |
"fad": extract_fad, | |
"mcd": extract_mcd, | |
"mstft": extract_mstft, | |
"pesq": extract_pesq, | |
"si_sdr": extract_si_sdr, | |
"si_snr": extract_si_snr, | |
"stoi": extract_stoi, | |
} | |
def calc_metric( | |
ref_dir, | |
deg_dir, | |
dump_dir, | |
metrics, | |
**kwargs, | |
): | |
result = defaultdict() | |
for metric in tqdm(metrics): | |
if metric in ["fad", "similarity"]: | |
result[metric] = str(METRIC_FUNC[metric](ref_dir, deg_dir, kwargs=kwargs)) | |
continue | |
audios_ref = [] | |
audios_deg = [] | |
files = glob(deg_dir + "/*.wav") | |
for file in files: | |
audios_deg.append(file) | |
uid = file.split("/")[-1].split(".wav")[0] | |
file_gt = ref_dir + "/{}.wav".format(uid) | |
audios_ref.append(file_gt) | |
if metric in ["wer", "cer"] and kwargs["intelligibility_mode"] == "gt_content": | |
ltr_path = kwargs["ltr_path"] | |
tmpltrs = {} | |
with open(ltr_path, "r") as f: | |
for line in f: | |
paras = line.replace("\n", "").split("|") | |
paras[1] = paras[1].replace(" ", "") | |
paras[1] = paras[1].replace(".", "") | |
paras[1] = paras[1].replace("'", "") | |
paras[1] = paras[1].replace("-", "") | |
paras[1] = paras[1].replace(",", "") | |
paras[1] = paras[1].replace("!", "") | |
paras[1] = paras[1].lower() | |
tmpltrs[paras[0]] = paras[1] | |
ltrs = [] | |
files = glob(ref_dir + "/*.wav") | |
for file in files: | |
ltrs.append(tmpltrs[os.path.basename(file)]) | |
if metric in ["v_uv_f1"]: | |
tp_total = 0 | |
fp_total = 0 | |
fn_total = 0 | |
for i in tqdm(range(len(audios_ref))): | |
audio_ref = audios_ref[i] | |
audio_deg = audios_deg[i] | |
tp, fp, fn = METRIC_FUNC[metric](audio_ref, audio_deg, kwargs=kwargs) | |
tp_total += tp | |
fp_total += fp | |
fn_total += fn | |
result[metric] = str(tp_total / (tp_total + (fp_total + fn_total) / 2)) | |
else: | |
scores = [] | |
for i in tqdm(range(len(audios_ref))): | |
audio_ref = audios_ref[i] | |
audio_deg = audios_deg[i] | |
if metric in ["wer", "cer"]: | |
model = whisper.load_model("large") | |
mode = kwargs["intelligibility_mode"] | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
model = model.to(device) | |
if mode == "gt_audio": | |
kwargs["audio_ref"] = audio_ref | |
kwargs["audio_deg"] = audio_deg | |
score = METRIC_FUNC[metric]( | |
model, | |
kwargs=kwargs, | |
) | |
elif mode == "gt_content": | |
kwargs["content_gt"] = ltrs[i] | |
kwargs["audio_deg"] = audio_deg | |
score = METRIC_FUNC[metric]( | |
model, | |
kwargs=kwargs, | |
) | |
else: | |
score = METRIC_FUNC[metric]( | |
audio_ref, | |
audio_deg, | |
kwargs=kwargs, | |
) | |
if not np.isnan(score): | |
scores.append(score) | |
scores = np.array(scores) | |
result["{}".format(metric)] = str(np.mean(scores)) | |
data = json.dumps(result, indent=4) | |
with open(os.path.join(dump_dir, "result.json"), "w", newline="\n") as f: | |
f.write(data) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--ref_dir", | |
type=str, | |
help="Path to the reference audio folder.", | |
) | |
parser.add_argument( | |
"--deg_dir", | |
type=str, | |
help="Path to the test audio folder.", | |
) | |
parser.add_argument( | |
"--dump_dir", | |
type=str, | |
help="Path to dump the results.", | |
) | |
parser.add_argument( | |
"--metrics", | |
nargs="+", | |
help="Metrics used to evaluate.", | |
) | |
parser.add_argument( | |
"--fs", | |
type=str, | |
default="None", | |
help="(Optional) Sampling rate", | |
) | |
parser.add_argument( | |
"--align_method", | |
type=str, | |
default="dtw", | |
help="(Optional) Method for aligning feature length. ['cut', 'dtw']", | |
) | |
parser.add_argument( | |
"--db_scale", | |
type=str, | |
default="True", | |
help="(Optional) Wether or not computing energy related metrics in db scale.", | |
) | |
parser.add_argument( | |
"--f0_subtract_mean", | |
type=str, | |
default="True", | |
help="(Optional) Wether or not computing f0 related metrics with mean value subtracted.", | |
) | |
parser.add_argument( | |
"--similarity_model", | |
type=str, | |
default="wavlm", | |
help="(Optional)The model for computing speaker similarity. ['rawnet', 'wavlm', 'resemblyzer']", | |
) | |
parser.add_argument( | |
"--similarity_mode", | |
type=str, | |
default="pairwith", | |
help="(Optional)The method of calculating similarity, where set to overall means computing \ | |
the speaker similarity between two folder of audios content freely, and set to pairwith means \ | |
computing the speaker similarity between a seires of paired gt/pred audios", | |
) | |
parser.add_argument( | |
"--ltr_path", | |
type=str, | |
default="None", | |
help="(Optional)Path to the transcription file,Note that the format in the transcription \ | |
file is 'file name|transcription'", | |
) | |
parser.add_argument( | |
"--intelligibility_mode", | |
type=str, | |
default="gt_audio", | |
help="(Optional)The method of calculating WER and CER, where set to gt_audio means selecting \ | |
the recognition content of the reference audio as the target, and set to gt_content means \ | |
using transcription as the target", | |
) | |
parser.add_argument( | |
"--language", | |
type=str, | |
default="english", | |
help="(Optional)['english','chinese']", | |
) | |
args = parser.parse_args() | |
calc_metric( | |
args.ref_dir, | |
args.deg_dir, | |
args.dump_dir, | |
args.metrics, | |
fs=int(args.fs) if args.fs != "None" else None, | |
method=args.align_method, | |
db_scale=True if args.db_scale == "True" else False, | |
need_mean=True if args.f0_subtract_mean == "True" else False, | |
model_name=args.similarity_model, | |
similarity_mode=args.similarity_mode, | |
ltr_path=args.ltr_path, | |
intelligibility_mode=args.intelligibility_mode, | |
language=args.language, | |
) | |