Spaces:
Runtime error
Runtime error
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import json | |
import os | |
import numpy as np | |
from scipy.interpolate import interp1d | |
from tqdm import tqdm | |
from sklearn.preprocessing import StandardScaler | |
def intersperse(lst, item): | |
""" | |
Insert an item in between any two consecutive elements of the given list, including beginning and end of list | |
Example: | |
>>> intersperse(0, [1, 74, 5, 31]) | |
[0, 1, 0, 74, 0, 5, 0, 31, 0] | |
""" | |
result = [item] * (len(lst) * 2 + 1) | |
result[1::2] = lst | |
return result | |
def load_content_feature_path(meta_data, processed_dir, feat_dir): | |
utt2feat_path = {} | |
for utt_info in meta_data: | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
feat_path = os.path.join( | |
processed_dir, utt_info["Dataset"], feat_dir, f'{utt_info["Uid"]}.npy' | |
) | |
utt2feat_path[utt] = feat_path | |
return utt2feat_path | |
def load_source_content_feature_path(meta_data, feat_dir): | |
utt2feat_path = {} | |
for utt in meta_data: | |
feat_path = os.path.join(feat_dir, f"{utt}.npy") | |
utt2feat_path[utt] = feat_path | |
return utt2feat_path | |
def get_spk_map(spk2id_path, utt2spk_path): | |
utt2spk = {} | |
with open(spk2id_path, "r") as spk2id_file: | |
spk2id = json.load(spk2id_file) | |
with open(utt2spk_path, encoding="utf-8") as f: | |
for line in f.readlines(): | |
utt, spk = line.strip().split("\t") | |
utt2spk[utt] = spk | |
return spk2id, utt2spk | |
def get_target_f0_median(f0_dir): | |
total_f0 = [] | |
for utt in os.listdir(f0_dir): | |
if not utt.endswith(".npy"): | |
continue | |
f0_feat_path = os.path.join(f0_dir, utt) | |
f0 = np.load(f0_feat_path) | |
total_f0 += f0.tolist() | |
total_f0 = np.array(total_f0) | |
voiced_position = np.where(total_f0 != 0) | |
return np.median(total_f0[voiced_position]) | |
def get_conversion_f0_factor(source_f0, target_median, source_median=None): | |
"""Align the median between source f0 and target f0 | |
Note: Here we use multiplication, whose factor is target_median/source_median | |
Reference: Frequency and pitch interval | |
http://blog.ccyg.studio/article/be12c2ee-d47c-4098-9782-ca76da3035e4/ | |
""" | |
if source_median is None: | |
voiced_position = np.where(source_f0 != 0) | |
source_median = np.median(source_f0[voiced_position]) | |
factor = target_median / source_median | |
return source_median, factor | |
def transpose_key(frame_pitch, trans_key): | |
# Transpose by user's argument | |
print("Transpose key = {} ...\n".format(trans_key)) | |
transed_pitch = frame_pitch * 2 ** (trans_key / 12) | |
return transed_pitch | |
def pitch_shift_to_target(frame_pitch, target_pitch_median, source_pitch_median=None): | |
# Loading F0 Base (median) and shift | |
source_pitch_median, factor = get_conversion_f0_factor( | |
frame_pitch, target_pitch_median, source_pitch_median | |
) | |
print( | |
"Auto transposing: source f0 median = {:.1f}, target f0 median = {:.1f}, factor = {:.2f}".format( | |
source_pitch_median, target_pitch_median, factor | |
) | |
) | |
transed_pitch = frame_pitch * factor | |
return transed_pitch | |
def load_frame_pitch( | |
meta_data, | |
processed_dir, | |
pitch_dir, | |
use_log_scale=False, | |
return_norm=False, | |
interoperate=False, | |
utt2spk=None, | |
): | |
utt2pitch = {} | |
utt2uv = {} | |
if utt2spk is None: | |
pitch_scaler = StandardScaler() | |
for utt_info in meta_data: | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
pitch_path = os.path.join( | |
processed_dir, utt_info["Dataset"], pitch_dir, f'{utt_info["Uid"]}.npy' | |
) | |
pitch = np.load(pitch_path) | |
assert len(pitch) > 0 | |
uv = pitch != 0 | |
utt2uv[utt] = uv | |
if use_log_scale: | |
nonzero_idxes = np.where(pitch != 0)[0] | |
pitch[nonzero_idxes] = np.log(pitch[nonzero_idxes]) | |
utt2pitch[utt] = pitch | |
pitch_scaler.partial_fit(pitch.reshape(-1, 1)) | |
mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0] | |
if return_norm: | |
for utt_info in meta_data: | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
pitch = utt2pitch[utt] | |
normalized_pitch = (pitch - mean) / std | |
utt2pitch[utt] = normalized_pitch | |
pitch_statistic = {"mean": mean, "std": std} | |
else: | |
spk2utt = {} | |
pitch_statistic = [] | |
for utt_info in meta_data: | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
if not utt2spk[utt] in spk2utt: | |
spk2utt[utt2spk[utt]] = [] | |
spk2utt[utt2spk[utt]].append(utt) | |
for spk in spk2utt: | |
pitch_scaler = StandardScaler() | |
for utt in spk2utt[spk]: | |
dataset = utt.split("_")[0] | |
uid = "_".join(utt.split("_")[1:]) | |
pitch_path = os.path.join( | |
processed_dir, dataset, pitch_dir, f"{uid}.npy" | |
) | |
pitch = np.load(pitch_path) | |
assert len(pitch) > 0 | |
uv = pitch != 0 | |
utt2uv[utt] = uv | |
if use_log_scale: | |
nonzero_idxes = np.where(pitch != 0)[0] | |
pitch[nonzero_idxes] = np.log(pitch[nonzero_idxes]) | |
utt2pitch[utt] = pitch | |
pitch_scaler.partial_fit(pitch.reshape(-1, 1)) | |
mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0] | |
if return_norm: | |
for utt in spk2utt[spk]: | |
pitch = utt2pitch[utt] | |
normalized_pitch = (pitch - mean) / std | |
utt2pitch[utt] = normalized_pitch | |
pitch_statistic.append({"spk": spk, "mean": mean, "std": std}) | |
return utt2pitch, utt2uv, pitch_statistic | |
# discard | |
def load_phone_pitch( | |
meta_data, | |
processed_dir, | |
pitch_dir, | |
utt2dur, | |
use_log_scale=False, | |
return_norm=False, | |
interoperate=True, | |
utt2spk=None, | |
): | |
print("Load Phone Pitch") | |
utt2pitch = {} | |
utt2uv = {} | |
if utt2spk is None: | |
pitch_scaler = StandardScaler() | |
for utt_info in tqdm(meta_data): | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
pitch_path = os.path.join( | |
processed_dir, utt_info["Dataset"], pitch_dir, f'{utt_info["Uid"]}.npy' | |
) | |
frame_pitch = np.load(pitch_path) | |
assert len(frame_pitch) > 0 | |
uv = frame_pitch != 0 | |
utt2uv[utt] = uv | |
phone_pitch = phone_average_pitch(frame_pitch, utt2dur[utt], interoperate) | |
if use_log_scale: | |
nonzero_idxes = np.where(phone_pitch != 0)[0] | |
phone_pitch[nonzero_idxes] = np.log(phone_pitch[nonzero_idxes]) | |
utt2pitch[utt] = phone_pitch | |
pitch_scaler.partial_fit(remove_outlier(phone_pitch).reshape(-1, 1)) | |
mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0] | |
max_value = np.finfo(np.float64).min | |
min_value = np.finfo(np.float64).max | |
if return_norm: | |
for utt_info in meta_data: | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
pitch = utt2pitch[utt] | |
normalized_pitch = (pitch - mean) / std | |
max_value = max(max_value, max(normalized_pitch)) | |
min_value = min(min_value, min(normalized_pitch)) | |
utt2pitch[utt] = normalized_pitch | |
phone_normalized_pitch_path = os.path.join( | |
processed_dir, | |
utt_info["Dataset"], | |
"phone_level_" + pitch_dir, | |
f'{utt_info["Uid"]}.npy', | |
) | |
pitch_statistic = { | |
"mean": mean, | |
"std": std, | |
"min_value": min_value, | |
"max_value": max_value, | |
} | |
else: | |
spk2utt = {} | |
pitch_statistic = [] | |
for utt_info in tqdm(meta_data): | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
if not utt2spk[utt] in spk2utt: | |
spk2utt[utt2spk[utt]] = [] | |
spk2utt[utt2spk[utt]].append(utt) | |
for spk in spk2utt: | |
pitch_scaler = StandardScaler() | |
for utt in spk2utt[spk]: | |
dataset = utt.split("_")[0] | |
uid = "_".join(utt.split("_")[1:]) | |
pitch_path = os.path.join( | |
processed_dir, dataset, pitch_dir, f"{uid}.npy" | |
) | |
frame_pitch = np.load(pitch_path) | |
assert len(frame_pitch) > 0 | |
uv = frame_pitch != 0 | |
utt2uv[utt] = uv | |
phone_pitch = phone_average_pitch( | |
frame_pitch, utt2dur[utt], interoperate | |
) | |
if use_log_scale: | |
nonzero_idxes = np.where(phone_pitch != 0)[0] | |
phone_pitch[nonzero_idxes] = np.log(phone_pitch[nonzero_idxes]) | |
utt2pitch[utt] = phone_pitch | |
pitch_scaler.partial_fit(remove_outlier(phone_pitch).reshape(-1, 1)) | |
mean, std = pitch_scaler.mean_[0], pitch_scaler.scale_[0] | |
max_value = np.finfo(np.float64).min | |
min_value = np.finfo(np.float64).max | |
if return_norm: | |
for utt in spk2utt[spk]: | |
pitch = utt2pitch[utt] | |
normalized_pitch = (pitch - mean) / std | |
max_value = max(max_value, max(normalized_pitch)) | |
min_value = min(min_value, min(normalized_pitch)) | |
utt2pitch[utt] = normalized_pitch | |
pitch_statistic.append( | |
{ | |
"spk": spk, | |
"mean": mean, | |
"std": std, | |
"min_value": min_value, | |
"max_value": max_value, | |
} | |
) | |
return utt2pitch, utt2uv, pitch_statistic | |
def phone_average_pitch(pitch, dur, interoperate=False): | |
pos = 0 | |
if interoperate: | |
nonzero_ids = np.where(pitch != 0)[0] | |
interp_fn = interp1d( | |
nonzero_ids, | |
pitch[nonzero_ids], | |
fill_value=(pitch[nonzero_ids[0]], pitch[nonzero_ids[-1]]), | |
bounds_error=False, | |
) | |
pitch = interp_fn(np.arange(0, len(pitch))) | |
phone_pitch = np.zeros(len(dur)) | |
for i, d in enumerate(dur): | |
d = int(d) | |
if d > 0 and pos < len(pitch): | |
phone_pitch[i] = np.mean(pitch[pos : pos + d]) | |
else: | |
phone_pitch[i] = 0 | |
pos += d | |
return phone_pitch | |
def load_energy( | |
meta_data, | |
processed_dir, | |
energy_dir, | |
use_log_scale=False, | |
return_norm=False, | |
utt2spk=None, | |
): | |
utt2energy = {} | |
if utt2spk is None: | |
for utt_info in meta_data: | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
energy_path = os.path.join( | |
processed_dir, utt_info["Dataset"], energy_dir, f'{utt_info["Uid"]}.npy' | |
) | |
if not os.path.exists(energy_path): | |
continue | |
energy = np.load(energy_path) | |
assert len(energy) > 0 | |
if use_log_scale: | |
nonzero_idxes = np.where(energy != 0)[0] | |
energy[nonzero_idxes] = np.log(energy[nonzero_idxes]) | |
utt2energy[utt] = energy | |
if return_norm: | |
with open( | |
os.path.join( | |
processed_dir, utt_info["Dataset"], energy_dir, "statistics.json" | |
) | |
) as f: | |
stats = json.load(f) | |
mean, std = ( | |
stats[utt_info["Dataset"] + "_" + utt_info["Singer"]][ | |
"voiced_positions" | |
]["mean"], | |
stats["LJSpeech_LJSpeech"]["voiced_positions"]["std"], | |
) | |
for utt in utt2energy.keys(): | |
energy = utt2energy[utt] | |
normalized_energy = (energy - mean) / std | |
utt2energy[utt] = normalized_energy | |
energy_statistic = {"mean": mean, "std": std} | |
else: | |
spk2utt = {} | |
energy_statistic = [] | |
for utt_info in meta_data: | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
if not utt2spk[utt] in spk2utt: | |
spk2utt[utt2spk[utt]] = [] | |
spk2utt[utt2spk[utt]].append(utt) | |
for spk in spk2utt: | |
energy_scaler = StandardScaler() | |
for utt in spk2utt[spk]: | |
dataset = utt.split("_")[0] | |
uid = "_".join(utt.split("_")[1:]) | |
energy_path = os.path.join( | |
processed_dir, dataset, energy_dir, f"{uid}.npy" | |
) | |
if not os.path.exists(energy_path): | |
continue | |
frame_energy = np.load(energy_path) | |
assert len(frame_energy) > 0 | |
if use_log_scale: | |
nonzero_idxes = np.where(frame_energy != 0)[0] | |
frame_energy[nonzero_idxes] = np.log(frame_energy[nonzero_idxes]) | |
utt2energy[utt] = frame_energy | |
energy_scaler.partial_fit(frame_energy.reshape(-1, 1)) | |
mean, std = energy_scaler.mean_[0], energy_scaler.scale_[0] | |
if return_norm: | |
for utt in spk2utt[spk]: | |
energy = utt2energy[utt] | |
normalized_energy = (energy - mean) / std | |
utt2energy[utt] = normalized_energy | |
energy_statistic.append({"spk": spk, "mean": mean, "std": std}) | |
return utt2energy, energy_statistic | |
def load_frame_energy( | |
meta_data, | |
processed_dir, | |
energy_dir, | |
use_log_scale=False, | |
return_norm=False, | |
interoperate=False, | |
utt2spk=None, | |
): | |
utt2energy = {} | |
if utt2spk is None: | |
energy_scaler = StandardScaler() | |
for utt_info in meta_data: | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
energy_path = os.path.join( | |
processed_dir, utt_info["Dataset"], energy_dir, f'{utt_info["Uid"]}.npy' | |
) | |
frame_energy = np.load(energy_path) | |
assert len(frame_energy) > 0 | |
if use_log_scale: | |
nonzero_idxes = np.where(frame_energy != 0)[0] | |
frame_energy[nonzero_idxes] = np.log(frame_energy[nonzero_idxes]) | |
utt2energy[utt] = frame_energy | |
energy_scaler.partial_fit(frame_energy.reshape(-1, 1)) | |
mean, std = energy_scaler.mean_[0], energy_scaler.scale_[0] | |
if return_norm: | |
for utt_info in meta_data: | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
energy = utt2energy[utt] | |
normalized_energy = (energy - mean) / std | |
utt2energy[utt] = normalized_energy | |
energy_statistic = {"mean": mean, "std": std} | |
else: | |
spk2utt = {} | |
energy_statistic = [] | |
for utt_info in meta_data: | |
utt = utt_info["Dataset"] + "_" + utt_info["Uid"] | |
if not utt2spk[utt] in spk2utt: | |
spk2utt[utt2spk[utt]] = [] | |
spk2utt[utt2spk[utt]].append(utt) | |
for spk in spk2utt: | |
energy_scaler = StandardScaler() | |
for utt in spk2utt[spk]: | |
dataset = utt.split("_")[0] | |
uid = "_".join(utt.split("_")[1:]) | |
energy_path = os.path.join( | |
processed_dir, dataset, energy_dir, f"{uid}.npy" | |
) | |
frame_energy = np.load(energy_path) | |
assert len(frame_energy) > 0 | |
if use_log_scale: | |
nonzero_idxes = np.where(frame_energy != 0)[0] | |
frame_energy[nonzero_idxes] = np.log(frame_energy[nonzero_idxes]) | |
utt2energy[utt] = frame_energy | |
energy_scaler.partial_fit(frame_energy.reshape(-1, 1)) | |
mean, std = energy_scaler.mean_[0], energy_scaler.scale_[0] | |
if return_norm: | |
for utt in spk2utt[spk]: | |
energy = utt2energy[utt] | |
normalized_energy = (energy - mean) / std | |
utt2energy[utt] = normalized_energy | |
energy_statistic.append({"spk": spk, "mean": mean, "std": std}) | |
return utt2energy, energy_statistic | |
def align_length(feature, target_len, pad_value=0.0): | |
feature_len = feature.shape[-1] | |
dim = len(feature.shape) | |
# align 1-D data | |
if dim == 2: | |
if target_len > feature_len: | |
feature = np.pad( | |
feature, | |
((0, 0), (0, target_len - feature_len)), | |
constant_values=pad_value, | |
) | |
else: | |
feature = feature[:, :target_len] | |
# align 2-D data | |
elif dim == 1: | |
if target_len > feature_len: | |
feature = np.pad( | |
feature, (0, target_len - feature_len), constant_values=pad_value | |
) | |
else: | |
feature = feature[:target_len] | |
else: | |
raise NotImplementedError | |
return feature | |
def align_whisper_feauture_length( | |
feature, target_len, fast_mapping=True, source_hop=320, target_hop=256 | |
): | |
factor = np.gcd(source_hop, target_hop) | |
source_hop //= factor | |
target_hop //= factor | |
# print( | |
# "Mapping source's {} frames => target's {} frames".format( | |
# target_hop, source_hop | |
# ) | |
# ) | |
max_source_len = 1500 | |
target_len = min(target_len, max_source_len * source_hop // target_hop) | |
width = feature.shape[-1] | |
if fast_mapping: | |
source_len = target_len * target_hop // source_hop + 1 | |
feature = feature[:source_len] | |
else: | |
source_len = max_source_len | |
# const ~= target_len * target_hop | |
const = source_len * source_hop // target_hop * target_hop | |
# (source_len * source_hop, dim) | |
up_sampling_feats = np.repeat(feature, source_hop, axis=0) | |
# (const, dim) -> (const/target_hop, target_hop, dim) -> (const/target_hop, dim) | |
down_sampling_feats = np.average( | |
up_sampling_feats[:const].reshape(-1, target_hop, width), axis=1 | |
) | |
assert len(down_sampling_feats) >= target_len | |
# (target_len, dim) | |
feat = down_sampling_feats[:target_len] | |
return feat | |
def align_content_feature_length(feature, target_len, source_hop=320, target_hop=256): | |
factor = np.gcd(source_hop, target_hop) | |
source_hop //= factor | |
target_hop //= factor | |
# print( | |
# "Mapping source's {} frames => target's {} frames".format( | |
# target_hop, source_hop | |
# ) | |
# ) | |
# (source_len, 256) | |
source_len, width = feature.shape | |
# const ~= target_len * target_hop | |
const = source_len * source_hop // target_hop * target_hop | |
# (source_len * source_hop, dim) | |
up_sampling_feats = np.repeat(feature, source_hop, axis=0) | |
# (const, dim) -> (const/target_hop, target_hop, dim) -> (const/target_hop, dim) | |
down_sampling_feats = np.average( | |
up_sampling_feats[:const].reshape(-1, target_hop, width), axis=1 | |
) | |
err = abs(target_len - len(down_sampling_feats)) | |
if err > 4: ## why 4 not 3? | |
print("target_len:", target_len) | |
print("raw feature:", feature.shape) | |
print("up_sampling:", up_sampling_feats.shape) | |
print("down_sampling_feats:", down_sampling_feats.shape) | |
exit() | |
if len(down_sampling_feats) < target_len: | |
# (1, dim) -> (err, dim) | |
end = down_sampling_feats[-1][None, :].repeat(err, axis=0) | |
down_sampling_feats = np.concatenate([down_sampling_feats, end], axis=0) | |
# (target_len, dim) | |
feat = down_sampling_feats[:target_len] | |
return feat | |
def remove_outlier(values): | |
values = np.array(values) | |
p25 = np.percentile(values, 25) | |
p75 = np.percentile(values, 75) | |
lower = p25 - 1.5 * (p75 - p25) | |
upper = p75 + 1.5 * (p75 - p25) | |
normal_indices = np.logical_and(values > lower, values < upper) | |
return values[normal_indices] | |