Spaces:
Runtime error
Runtime error
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
from tqdm import tqdm | |
from text.g2p_module import G2PModule, LexiconModule | |
from text.symbol_table import SymbolTable | |
""" | |
phoneExtractor: extract phone from text | |
""" | |
class phoneExtractor: | |
def __init__(self, cfg, dataset_name=None, phone_symbol_file=None): | |
""" | |
Args: | |
cfg: config | |
dataset_name: name of dataset | |
""" | |
self.cfg = cfg | |
# phone symbols dict | |
self.phone_symbols = set() | |
# phone symbols dict file | |
if phone_symbol_file is not None: | |
self.phone_symbols_file = phone_symbol_file | |
elif dataset_name is not None: | |
self.dataset_name = dataset_name | |
self.phone_symbols_file = os.path.join( | |
cfg.preprocess.processed_dir, dataset_name, cfg.preprocess.symbols_dict | |
) | |
# initialize g2p module | |
if cfg.preprocess.phone_extractor in [ | |
"espeak", | |
"pypinyin", | |
"pypinyin_initials_finals", | |
]: | |
self.g2p_module = G2PModule( | |
backend=cfg.preprocess.phone_extractor, language=cfg.preprocess.language | |
) | |
elif cfg.preprocess.phone_extractor == "lexicon": | |
assert cfg.preprocess.lexicon_path != "" | |
self.g2p_module = LexiconModule(cfg.preprocess.lexicon_path) | |
else: | |
print("No support to", cfg.preprocess.phone_extractor) | |
raise | |
def extract_phone(self, text): | |
""" | |
Extract phone from text | |
Args: | |
text: text of utterance | |
Returns: | |
phone_symbols: set of phone symbols | |
phone_seq: list of phone sequence of each utterance | |
""" | |
if self.cfg.preprocess.phone_extractor in [ | |
"espeak", | |
"pypinyin", | |
"pypinyin_initials_finals", | |
]: | |
text = text.replace("”", '"').replace("“", '"') | |
phone = self.g2p_module.g2p_conversion(text=text) | |
self.phone_symbols.update(phone) | |
phone_seq = [phn for phn in phone] | |
elif self.cfg.preprocess.phone_extractor == "lexicon": | |
phone_seq = self.g2p_module.g2p_conversion(text) | |
phone = phone_seq | |
if not isinstance(phone_seq, list): | |
phone_seq = phone_seq.split() | |
return phone_seq | |
def save_dataset_phone_symbols_to_table(self): | |
# load and merge saved phone symbols | |
if os.path.exists(self.phone_symbols_file): | |
phone_symbol_dict_saved = SymbolTable.from_file( | |
self.phone_symbols_file | |
)._sym2id.keys() | |
self.phone_symbols.update(set(phone_symbol_dict_saved)) | |
# save phone symbols | |
phone_symbol_dict = SymbolTable() | |
for s in sorted(list(self.phone_symbols)): | |
phone_symbol_dict.add(s) | |
phone_symbol_dict.to_file(self.phone_symbols_file) | |
def extract_utt_phone_sequence(dataset, cfg, metadata): | |
""" | |
Extract phone sequence from text | |
Args: | |
dataset (str): name of dataset, e.g. opencpop | |
cfg: config | |
metadata: list of dict, each dict contains "Uid", "Text" | |
""" | |
dataset_name = dataset | |
# output path | |
out_path = os.path.join( | |
cfg.preprocess.processed_dir, dataset_name, cfg.preprocess.phone_dir | |
) | |
os.makedirs(out_path, exist_ok=True) | |
phone_extractor = phoneExtractor(cfg, dataset_name) | |
for utt in tqdm(metadata): | |
uid = utt["Uid"] | |
text = utt["Text"] | |
phone_seq = phone_extractor.extract_phone(text) | |
phone_path = os.path.join(out_path, uid + ".phone") | |
with open(phone_path, "w") as fin: | |
fin.write(" ".join(phone_seq)) | |
if cfg.preprocess.phone_extractor != "lexicon": | |
phone_extractor.save_dataset_phone_symbols_to_table() | |
def save_all_dataset_phone_symbols_to_table(self, cfg, dataset): | |
# phone symbols dict | |
phone_symbols = set() | |
for dataset_name in dataset: | |
phone_symbols_file = os.path.join( | |
cfg.preprocess.processed_dir, dataset_name, cfg.preprocess.symbols_dict | |
) | |
# load and merge saved phone symbols | |
assert os.path.exists(phone_symbols_file) | |
phone_symbol_dict_saved = SymbolTable.from_file( | |
phone_symbols_file | |
)._sym2id.keys() | |
phone_symbols.update(set(phone_symbol_dict_saved)) | |
# save all phone symbols to each dataset | |
phone_symbol_dict = SymbolTable() | |
for s in sorted(list(phone_symbols)): | |
phone_symbol_dict.add(s) | |
for dataset_name in dataset: | |
phone_symbols_file = os.path.join( | |
cfg.preprocess.processed_dir, dataset_name, cfg.preprocess.symbols_dict | |
) | |
phone_symbol_dict.to_file(phone_symbols_file) | |