Hecheng0625's picture
Upload 409 files
c968fc3 verified
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from torch import nn, sin, pow
from torch.nn import Parameter
import torch.nn.functional as F
from torch.nn.utils import weight_norm
from .alias_free_torch import *
from .quantize import *
from einops import rearrange
from einops.layers.torch import Rearrange
from .transformer import TransformerEncoder
from .gradient_reversal import GradientReversal
from .melspec import MelSpectrogram
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
class CNNLSTM(nn.Module):
def __init__(self, indim, outdim, head, global_pred=False):
super().__init__()
self.global_pred = global_pred
self.model = nn.Sequential(
ResidualUnit(indim, dilation=1),
ResidualUnit(indim, dilation=2),
ResidualUnit(indim, dilation=3),
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
Rearrange("b c t -> b t c"),
)
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
def forward(self, x):
# x: [B, C, T]
x = self.model(x)
if self.global_pred:
x = torch.mean(x, dim=1, keepdim=False)
outs = [head(x) for head in self.heads]
return outs
class SnakeBeta(nn.Module):
"""
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
):
"""
Initialization.
INPUT:
- in_features: shape of the input
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
"""
super(SnakeBeta, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = Parameter(torch.zeros(in_features) * alpha)
self.beta = Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = Parameter(torch.ones(in_features) * alpha)
self.beta = Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
"""
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta := x + 1/b * sin^2 (xa)
"""
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
beta = self.beta.unsqueeze(0).unsqueeze(-1)
if self.alpha_logscale:
alpha = torch.exp(alpha)
beta = torch.exp(beta)
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x
class ResidualUnit(nn.Module):
def __init__(self, dim: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.block = nn.Sequential(
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
WNConv1d(dim, dim, kernel_size=1),
)
def forward(self, x):
return x + self.block(x)
class EncoderBlock(nn.Module):
def __init__(self, dim: int = 16, stride: int = 1):
super().__init__()
self.block = nn.Sequential(
ResidualUnit(dim // 2, dilation=1),
ResidualUnit(dim // 2, dilation=3),
ResidualUnit(dim // 2, dilation=9),
Activation1d(activation=SnakeBeta(dim // 2, alpha_logscale=True)),
WNConv1d(
dim // 2,
dim,
kernel_size=2 * stride,
stride=stride,
padding=stride // 2 + stride % 2,
),
)
def forward(self, x):
return self.block(x)
class FACodecEncoder(nn.Module):
def __init__(
self,
ngf=32,
up_ratios=(2, 4, 5, 5),
out_channels=1024,
):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.up_ratios = up_ratios
# Create first convolution
d_model = ngf
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
# Create EncoderBlocks that double channels as they downsample by `stride`
for stride in up_ratios:
d_model *= 2
self.block += [EncoderBlock(d_model, stride=stride)]
# Create last convolution
self.block += [
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)),
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
]
# Wrap black into nn.Sequential
self.block = nn.Sequential(*self.block)
self.enc_dim = d_model
self.reset_parameters()
def forward(self, x):
out = self.block(x)
return out
def inference(self, x):
return self.block(x)
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
class DecoderBlock(nn.Module):
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1):
super().__init__()
self.block = nn.Sequential(
Activation1d(activation=SnakeBeta(input_dim, alpha_logscale=True)),
WNConvTranspose1d(
input_dim,
output_dim,
kernel_size=2 * stride,
stride=stride,
padding=stride // 2 + stride % 2,
output_padding=stride % 2,
),
ResidualUnit(output_dim, dilation=1),
ResidualUnit(output_dim, dilation=3),
ResidualUnit(output_dim, dilation=9),
)
def forward(self, x):
return self.block(x)
class FACodecDecoder(nn.Module):
def __init__(
self,
in_channels=256,
upsample_initial_channel=1536,
ngf=32,
up_ratios=(5, 5, 4, 2),
vq_num_q_c=2,
vq_num_q_p=1,
vq_num_q_r=3,
vq_dim=1024,
vq_commit_weight=0.005,
vq_weight_init=False,
vq_full_commit_loss=False,
codebook_dim=8,
codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size
codebook_size_content=10,
codebook_size_residual=10,
quantizer_dropout=0.0,
dropout_type="linear",
use_gr_content_f0=False,
use_gr_prosody_phone=False,
use_gr_residual_f0=False,
use_gr_residual_phone=False,
use_gr_x_timbre=False,
use_random_mask_residual=True,
prob_random_mask_residual=0.75,
):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.ngf = ngf
self.up_ratios = up_ratios
self.use_random_mask_residual = use_random_mask_residual
self.prob_random_mask_residual = prob_random_mask_residual
self.vq_num_q_p = vq_num_q_p
self.vq_num_q_c = vq_num_q_c
self.vq_num_q_r = vq_num_q_r
self.codebook_size_prosody = codebook_size_prosody
self.codebook_size_content = codebook_size_content
self.codebook_size_residual = codebook_size_residual
quantizer_class = ResidualVQ
self.quantizer = nn.ModuleList()
# prosody
quantizer = quantizer_class(
num_quantizers=vq_num_q_p,
dim=vq_dim,
codebook_size=codebook_size_prosody,
codebook_dim=codebook_dim,
threshold_ema_dead_code=2,
commitment=vq_commit_weight,
weight_init=vq_weight_init,
full_commit_loss=vq_full_commit_loss,
quantizer_dropout=quantizer_dropout,
dropout_type=dropout_type,
)
self.quantizer.append(quantizer)
# phone
quantizer = quantizer_class(
num_quantizers=vq_num_q_c,
dim=vq_dim,
codebook_size=codebook_size_content,
codebook_dim=codebook_dim,
threshold_ema_dead_code=2,
commitment=vq_commit_weight,
weight_init=vq_weight_init,
full_commit_loss=vq_full_commit_loss,
quantizer_dropout=quantizer_dropout,
dropout_type=dropout_type,
)
self.quantizer.append(quantizer)
# residual
if self.vq_num_q_r > 0:
quantizer = quantizer_class(
num_quantizers=vq_num_q_r,
dim=vq_dim,
codebook_size=codebook_size_residual,
codebook_dim=codebook_dim,
threshold_ema_dead_code=2,
commitment=vq_commit_weight,
weight_init=vq_weight_init,
full_commit_loss=vq_full_commit_loss,
quantizer_dropout=quantizer_dropout,
dropout_type=dropout_type,
)
self.quantizer.append(quantizer)
# Add first conv layer
channels = upsample_initial_channel
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
# Add upsampling + MRF blocks
for i, stride in enumerate(up_ratios):
input_dim = channels // 2**i
output_dim = channels // 2 ** (i + 1)
layers += [DecoderBlock(input_dim, output_dim, stride)]
# Add final conv layer
layers += [
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
nn.Tanh(),
]
self.model = nn.Sequential(*layers)
self.timbre_encoder = TransformerEncoder(
enc_emb_tokens=None,
encoder_layer=4,
encoder_hidden=256,
encoder_head=4,
conv_filter_size=1024,
conv_kernel_size=5,
encoder_dropout=0.1,
use_cln=False,
)
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
self.timbre_linear.bias.data[:in_channels] = 1
self.timbre_linear.bias.data[in_channels:] = 0
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
self.f0_predictor = CNNLSTM(in_channels, 1, 2)
self.phone_predictor = CNNLSTM(in_channels, 5003, 1)
self.use_gr_content_f0 = use_gr_content_f0
self.use_gr_prosody_phone = use_gr_prosody_phone
self.use_gr_residual_f0 = use_gr_residual_f0
self.use_gr_residual_phone = use_gr_residual_phone
self.use_gr_x_timbre = use_gr_x_timbre
if self.vq_num_q_r > 0 and self.use_gr_residual_f0:
self.res_f0_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
)
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0:
self.res_phone_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
)
if self.use_gr_content_f0:
self.content_f0_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
)
if self.use_gr_prosody_phone:
self.prosody_phone_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
)
if self.use_gr_x_timbre:
self.x_timbre_predictor = nn.Sequential(
GradientReversal(alpha=1),
CNNLSTM(in_channels, 245200, 1, global_pred=True),
)
self.reset_parameters()
def quantize(self, x, n_quantizers=None):
outs, qs, commit_loss, quantized_buf = 0, [], [], []
# prosody
f0_input = x # (B, d, T)
f0_quantizer = self.quantizer[0]
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers)
outs += out
qs.append(q)
quantized_buf.append(quantized.sum(0))
commit_loss.append(commit)
# phone
phone_input = x
phone_quantizer = self.quantizer[1]
out, q, commit, quantized = phone_quantizer(
phone_input, n_quantizers=n_quantizers
)
outs += out
qs.append(q)
quantized_buf.append(quantized.sum(0))
commit_loss.append(commit)
# residual
if self.vq_num_q_r > 0:
residual_quantizer = self.quantizer[2]
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach()
out, q, commit, quantized = residual_quantizer(
residual_input, n_quantizers=n_quantizers
)
outs += out
qs.append(q)
quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T]
commit_loss.append(commit)
qs = torch.cat(qs, dim=0)
commit_loss = torch.cat(commit_loss, dim=0)
return outs, qs, commit_loss, quantized_buf
def forward(
self,
x,
vq=True,
get_vq=False,
eval_vq=True,
speaker_embedding=None,
n_quantizers=None,
quantized=None,
):
if get_vq:
return self.quantizer.get_emb()
if vq is True:
if eval_vq:
self.quantizer.eval()
x_timbre = x
outs, qs, commit_loss, quantized_buf = self.quantize(
x, n_quantizers=n_quantizers
)
x_timbre = x_timbre.transpose(1, 2)
x_timbre = self.timbre_encoder(x_timbre, None, None)
x_timbre = x_timbre.transpose(1, 2)
spk_embs = torch.mean(x_timbre, dim=2)
return outs, qs, commit_loss, quantized_buf, spk_embs
out = {}
layer_0 = quantized[0]
f0, uv = self.f0_predictor(layer_0)
f0 = rearrange(f0, "... 1 -> ...")
uv = rearrange(uv, "... 1 -> ...")
layer_1 = quantized[1]
(phone,) = self.phone_predictor(layer_1)
out = {"f0": f0, "uv": uv, "phone": phone}
if self.use_gr_prosody_phone:
(prosody_phone,) = self.prosody_phone_predictor(layer_0)
out["prosody_phone"] = prosody_phone
if self.use_gr_content_f0:
content_f0, content_uv = self.content_f0_predictor(layer_1)
content_f0 = rearrange(content_f0, "... 1 -> ...")
content_uv = rearrange(content_uv, "... 1 -> ...")
out["content_f0"] = content_f0
out["content_uv"] = content_uv
if self.vq_num_q_r > 0:
layer_2 = quantized[2]
if self.use_gr_residual_f0:
res_f0, res_uv = self.res_f0_predictor(layer_2)
res_f0 = rearrange(res_f0, "... 1 -> ...")
res_uv = rearrange(res_uv, "... 1 -> ...")
out["res_f0"] = res_f0
out["res_uv"] = res_uv
if self.use_gr_residual_phone:
(res_phone,) = self.res_phone_predictor(layer_2)
out["res_phone"] = res_phone
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
gamma, beta = style.chunk(2, 1) # (B, d, 1)
if self.vq_num_q_r > 0:
if self.use_random_mask_residual:
bsz = quantized[2].shape[0]
res_mask = np.random.choice(
[0, 1],
size=bsz,
p=[
self.prob_random_mask_residual,
1 - self.prob_random_mask_residual,
],
)
res_mask = (
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
) # (B, 1, 1)
res_mask = res_mask.to(
device=quantized[2].device, dtype=quantized[2].dtype
)
x = (
quantized[0].detach()
+ quantized[1].detach()
+ quantized[2] * res_mask
)
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask
else:
x = quantized[0].detach() + quantized[1].detach() + quantized[2]
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2]
else:
x = quantized[0].detach() + quantized[1].detach()
# x = quantized_perturbe[0].detach() + quantized[1].detach()
if self.use_gr_x_timbre:
(x_timbre,) = self.x_timbre_predictor(x)
out["x_timbre"] = x_timbre
x = x.transpose(1, 2)
x = self.timbre_norm(x)
x = x.transpose(1, 2)
x = x * gamma + beta
x = self.model(x)
out["audio"] = x
return out
def vq2emb(self, vq, use_residual_code=True):
# vq: [num_quantizer, B, T]
self.quantizer = self.quantizer.eval()
out = 0
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p])
out += self.quantizer[1].vq2emb(
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c]
)
if self.vq_num_q_r > 0 and use_residual_code:
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :])
return out
def inference(self, x, speaker_embedding):
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
gamma, beta = style.chunk(2, 1) # (B, d, 1)
x = x.transpose(1, 2)
x = self.timbre_norm(x)
x = x.transpose(1, 2)
x = x * gamma + beta
x = self.model(x)
return x
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
class FACodecRedecoder(nn.Module):
def __init__(
self,
in_channels=256,
upsample_initial_channel=1280,
up_ratios=(5, 5, 4, 2),
vq_num_q_c=2,
vq_num_q_p=1,
vq_num_q_r=3,
vq_dim=256,
codebook_size_prosody=10,
codebook_size_content=10,
codebook_size_residual=10,
):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.up_ratios = up_ratios
self.vq_num_q_p = vq_num_q_p
self.vq_num_q_c = vq_num_q_c
self.vq_num_q_r = vq_num_q_r
self.vq_dim = vq_dim
self.codebook_size_prosody = codebook_size_prosody
self.codebook_size_content = codebook_size_content
self.codebook_size_residual = codebook_size_residual
self.prosody_embs = nn.ModuleList()
for i in range(self.vq_num_q_p):
emb_tokens = nn.Embedding(
num_embeddings=2**self.codebook_size_prosody,
embedding_dim=self.vq_dim,
)
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
self.prosody_embs.append(emb_tokens)
self.content_embs = nn.ModuleList()
for i in range(self.vq_num_q_c):
emb_tokens = nn.Embedding(
num_embeddings=2**self.codebook_size_content,
embedding_dim=self.vq_dim,
)
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
self.content_embs.append(emb_tokens)
self.residual_embs = nn.ModuleList()
for i in range(self.vq_num_q_r):
emb_tokens = nn.Embedding(
num_embeddings=2**self.codebook_size_residual,
embedding_dim=self.vq_dim,
)
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
self.residual_embs.append(emb_tokens)
# Add first conv layer
channels = upsample_initial_channel
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
# Add upsampling + MRF blocks
for i, stride in enumerate(up_ratios):
input_dim = channels // 2**i
output_dim = channels // 2 ** (i + 1)
layers += [DecoderBlock(input_dim, output_dim, stride)]
# Add final conv layer
layers += [
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
nn.Tanh(),
]
self.model = nn.Sequential(*layers)
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
self.timbre_linear.bias.data[:in_channels] = 1
self.timbre_linear.bias.data[in_channels:] = 0
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
self.timbre_cond_prosody_enc = TransformerEncoder(
enc_emb_tokens=None,
encoder_layer=4,
encoder_hidden=256,
encoder_head=4,
conv_filter_size=1024,
conv_kernel_size=5,
encoder_dropout=0.1,
use_cln=True,
cfg=None,
)
def forward(
self,
vq,
speaker_embedding,
use_residual_code=False,
):
x = 0
x_p = 0
for i in range(self.vq_num_q_p):
x_p = x_p + self.prosody_embs[i](vq[i]) # (B, T, d)
spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_p.shape[1], -1)
x_p = self.timbre_cond_prosody_enc(
x_p, key_padding_mask=None, condition=spk_cond
)
x = x + x_p
x_c = 0
for i in range(self.vq_num_q_c):
x_c = x_c + self.content_embs[i](vq[self.vq_num_q_p + i])
x = x + x_c
if use_residual_code:
x_r = 0
for i in range(self.vq_num_q_r):
x_r = x_r + self.residual_embs[i](
vq[self.vq_num_q_p + self.vq_num_q_c + i]
)
x = x + x_r
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
gamma, beta = style.chunk(2, 1) # (B, d, 1)
x = x.transpose(1, 2)
x = self.timbre_norm(x)
x = x.transpose(1, 2)
x = x * gamma + beta
x = self.model(x)
return x
def vq2emb(self, vq, speaker_embedding, use_residual=True):
out = 0
x_t = 0
for i in range(self.vq_num_q_p):
x_t += self.prosody_embs[i](vq[i]) # (B, T, d)
spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_t.shape[1], -1)
x_t = self.timbre_cond_prosody_enc(
x_t, key_padding_mask=None, condition=spk_cond
)
# prosody
out += x_t
# content
for i in range(self.vq_num_q_c):
out += self.content_embs[i](vq[self.vq_num_q_p + i])
# residual
if use_residual:
for i in range(self.vq_num_q_r):
out += self.residual_embs[i](vq[self.vq_num_q_p + self.vq_num_q_c + i])
out = out.transpose(1, 2) # (B, T, d) -> (B, d, T)
return out
def inference(self, x, speaker_embedding):
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
gamma, beta = style.chunk(2, 1) # (B, d, 1)
x = x.transpose(1, 2)
x = self.timbre_norm(x)
x = x.transpose(1, 2)
x = x * gamma + beta
x = self.model(x)
return x
class FACodecEncoderV2(nn.Module):
def __init__(
self,
ngf=32,
up_ratios=(2, 4, 5, 5),
out_channels=1024,
):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.up_ratios = up_ratios
# Create first convolution
d_model = ngf
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
# Create EncoderBlocks that double channels as they downsample by `stride`
for stride in up_ratios:
d_model *= 2
self.block += [EncoderBlock(d_model, stride=stride)]
# Create last convolution
self.block += [
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)),
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
]
# Wrap black into nn.Sequential
self.block = nn.Sequential(*self.block)
self.enc_dim = d_model
self.mel_transform = MelSpectrogram(
n_fft=1024,
num_mels=80,
sampling_rate=16000,
hop_size=200,
win_size=800,
fmin=0,
fmax=8000,
)
self.reset_parameters()
def forward(self, x):
out = self.block(x)
return out
def inference(self, x):
return self.block(x)
def get_prosody_feature(self, x):
return self.mel_transform(x.squeeze(1))[:, :20, :]
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)
class FACodecDecoderV2(nn.Module):
def __init__(
self,
in_channels=256,
upsample_initial_channel=1536,
ngf=32,
up_ratios=(5, 5, 4, 2),
vq_num_q_c=2,
vq_num_q_p=1,
vq_num_q_r=3,
vq_dim=1024,
vq_commit_weight=0.005,
vq_weight_init=False,
vq_full_commit_loss=False,
codebook_dim=8,
codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size
codebook_size_content=10,
codebook_size_residual=10,
quantizer_dropout=0.0,
dropout_type="linear",
use_gr_content_f0=False,
use_gr_prosody_phone=False,
use_gr_residual_f0=False,
use_gr_residual_phone=False,
use_gr_x_timbre=False,
use_random_mask_residual=True,
prob_random_mask_residual=0.75,
):
super().__init__()
self.hop_length = np.prod(up_ratios)
self.ngf = ngf
self.up_ratios = up_ratios
self.use_random_mask_residual = use_random_mask_residual
self.prob_random_mask_residual = prob_random_mask_residual
self.vq_num_q_p = vq_num_q_p
self.vq_num_q_c = vq_num_q_c
self.vq_num_q_r = vq_num_q_r
self.codebook_size_prosody = codebook_size_prosody
self.codebook_size_content = codebook_size_content
self.codebook_size_residual = codebook_size_residual
quantizer_class = ResidualVQ
self.quantizer = nn.ModuleList()
# prosody
quantizer = quantizer_class(
num_quantizers=vq_num_q_p,
dim=vq_dim,
codebook_size=codebook_size_prosody,
codebook_dim=codebook_dim,
threshold_ema_dead_code=2,
commitment=vq_commit_weight,
weight_init=vq_weight_init,
full_commit_loss=vq_full_commit_loss,
quantizer_dropout=quantizer_dropout,
dropout_type=dropout_type,
)
self.quantizer.append(quantizer)
# phone
quantizer = quantizer_class(
num_quantizers=vq_num_q_c,
dim=vq_dim,
codebook_size=codebook_size_content,
codebook_dim=codebook_dim,
threshold_ema_dead_code=2,
commitment=vq_commit_weight,
weight_init=vq_weight_init,
full_commit_loss=vq_full_commit_loss,
quantizer_dropout=quantizer_dropout,
dropout_type=dropout_type,
)
self.quantizer.append(quantizer)
# residual
if self.vq_num_q_r > 0:
quantizer = quantizer_class(
num_quantizers=vq_num_q_r,
dim=vq_dim,
codebook_size=codebook_size_residual,
codebook_dim=codebook_dim,
threshold_ema_dead_code=2,
commitment=vq_commit_weight,
weight_init=vq_weight_init,
full_commit_loss=vq_full_commit_loss,
quantizer_dropout=quantizer_dropout,
dropout_type=dropout_type,
)
self.quantizer.append(quantizer)
# Add first conv layer
channels = upsample_initial_channel
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
# Add upsampling + MRF blocks
for i, stride in enumerate(up_ratios):
input_dim = channels // 2**i
output_dim = channels // 2 ** (i + 1)
layers += [DecoderBlock(input_dim, output_dim, stride)]
# Add final conv layer
layers += [
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
nn.Tanh(),
]
self.model = nn.Sequential(*layers)
self.timbre_encoder = TransformerEncoder(
enc_emb_tokens=None,
encoder_layer=4,
encoder_hidden=256,
encoder_head=4,
conv_filter_size=1024,
conv_kernel_size=5,
encoder_dropout=0.1,
use_cln=False,
)
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
self.timbre_linear.bias.data[:in_channels] = 1
self.timbre_linear.bias.data[in_channels:] = 0
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
self.f0_predictor = CNNLSTM(in_channels, 1, 2)
self.phone_predictor = CNNLSTM(in_channels, 5003, 1)
self.use_gr_content_f0 = use_gr_content_f0
self.use_gr_prosody_phone = use_gr_prosody_phone
self.use_gr_residual_f0 = use_gr_residual_f0
self.use_gr_residual_phone = use_gr_residual_phone
self.use_gr_x_timbre = use_gr_x_timbre
if self.vq_num_q_r > 0 and self.use_gr_residual_f0:
self.res_f0_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
)
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0:
self.res_phone_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
)
if self.use_gr_content_f0:
self.content_f0_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
)
if self.use_gr_prosody_phone:
self.prosody_phone_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
)
if self.use_gr_x_timbre:
self.x_timbre_predictor = nn.Sequential(
GradientReversal(alpha=1),
CNNLSTM(in_channels, 245200, 1, global_pred=True),
)
self.melspec_linear = nn.Linear(20, 256)
self.melspec_encoder = TransformerEncoder(
enc_emb_tokens=None,
encoder_layer=4,
encoder_hidden=256,
encoder_head=4,
conv_filter_size=1024,
conv_kernel_size=5,
encoder_dropout=0.1,
use_cln=False,
cfg=None,
)
self.reset_parameters()
def quantize(self, x, prosody_feature, n_quantizers=None):
outs, qs, commit_loss, quantized_buf = 0, [], [], []
# prosody
f0_input = prosody_feature.transpose(1, 2) # (B, T, 20)
f0_input = self.melspec_linear(f0_input)
f0_input = self.melspec_encoder(f0_input, None, None)
f0_input = f0_input.transpose(1, 2)
f0_quantizer = self.quantizer[0]
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers)
outs += out
qs.append(q)
quantized_buf.append(quantized.sum(0))
commit_loss.append(commit)
# phone
phone_input = x
phone_quantizer = self.quantizer[1]
out, q, commit, quantized = phone_quantizer(
phone_input, n_quantizers=n_quantizers
)
outs += out
qs.append(q)
quantized_buf.append(quantized.sum(0))
commit_loss.append(commit)
# residual
if self.vq_num_q_r > 0:
residual_quantizer = self.quantizer[2]
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach()
out, q, commit, quantized = residual_quantizer(
residual_input, n_quantizers=n_quantizers
)
outs += out
qs.append(q)
quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T]
commit_loss.append(commit)
qs = torch.cat(qs, dim=0)
commit_loss = torch.cat(commit_loss, dim=0)
return outs, qs, commit_loss, quantized_buf
def forward(
self,
x,
prosody_feature,
vq=True,
get_vq=False,
eval_vq=True,
speaker_embedding=None,
n_quantizers=None,
quantized=None,
):
if get_vq:
return self.quantizer.get_emb()
if vq is True:
if eval_vq:
self.quantizer.eval()
x_timbre = x
outs, qs, commit_loss, quantized_buf = self.quantize(
x, prosody_feature, n_quantizers=n_quantizers
)
x_timbre = x_timbre.transpose(1, 2)
x_timbre = self.timbre_encoder(x_timbre, None, None)
x_timbre = x_timbre.transpose(1, 2)
spk_embs = torch.mean(x_timbre, dim=2)
return outs, qs, commit_loss, quantized_buf, spk_embs
out = {}
layer_0 = quantized[0]
f0, uv = self.f0_predictor(layer_0)
f0 = rearrange(f0, "... 1 -> ...")
uv = rearrange(uv, "... 1 -> ...")
layer_1 = quantized[1]
(phone,) = self.phone_predictor(layer_1)
out = {"f0": f0, "uv": uv, "phone": phone}
if self.use_gr_prosody_phone:
(prosody_phone,) = self.prosody_phone_predictor(layer_0)
out["prosody_phone"] = prosody_phone
if self.use_gr_content_f0:
content_f0, content_uv = self.content_f0_predictor(layer_1)
content_f0 = rearrange(content_f0, "... 1 -> ...")
content_uv = rearrange(content_uv, "... 1 -> ...")
out["content_f0"] = content_f0
out["content_uv"] = content_uv
if self.vq_num_q_r > 0:
layer_2 = quantized[2]
if self.use_gr_residual_f0:
res_f0, res_uv = self.res_f0_predictor(layer_2)
res_f0 = rearrange(res_f0, "... 1 -> ...")
res_uv = rearrange(res_uv, "... 1 -> ...")
out["res_f0"] = res_f0
out["res_uv"] = res_uv
if self.use_gr_residual_phone:
(res_phone,) = self.res_phone_predictor(layer_2)
out["res_phone"] = res_phone
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
gamma, beta = style.chunk(2, 1) # (B, d, 1)
if self.vq_num_q_r > 0:
if self.use_random_mask_residual:
bsz = quantized[2].shape[0]
res_mask = np.random.choice(
[0, 1],
size=bsz,
p=[
self.prob_random_mask_residual,
1 - self.prob_random_mask_residual,
],
)
res_mask = (
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
) # (B, 1, 1)
res_mask = res_mask.to(
device=quantized[2].device, dtype=quantized[2].dtype
)
x = (
quantized[0].detach()
+ quantized[1].detach()
+ quantized[2] * res_mask
)
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask
else:
x = quantized[0].detach() + quantized[1].detach() + quantized[2]
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2]
else:
x = quantized[0].detach() + quantized[1].detach()
# x = quantized_perturbe[0].detach() + quantized[1].detach()
if self.use_gr_x_timbre:
(x_timbre,) = self.x_timbre_predictor(x)
out["x_timbre"] = x_timbre
x = x.transpose(1, 2)
x = self.timbre_norm(x)
x = x.transpose(1, 2)
x = x * gamma + beta
x = self.model(x)
out["audio"] = x
return out
def vq2emb(self, vq, use_residual=True):
# vq: [num_quantizer, B, T]
self.quantizer = self.quantizer.eval()
out = 0
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p])
out += self.quantizer[1].vq2emb(
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c]
)
if self.vq_num_q_r > 0 and use_residual:
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :])
return out
def inference(self, x, speaker_embedding):
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
gamma, beta = style.chunk(2, 1) # (B, d, 1)
x = x.transpose(1, 2)
x = self.timbre_norm(x)
x = x.transpose(1, 2)
x = x * gamma + beta
x = self.model(x)
return x
def remove_weight_norm(self):
"""Remove weight normalization module from all of the layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
"""Apply weight normalization module from all of the layers."""
def _apply_weight_norm(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
torch.nn.utils.weight_norm(m)
self.apply(_apply_weight_norm)
def reset_parameters(self):
self.apply(init_weights)