Spaces:
Runtime error
Runtime error
import torch | |
import pyworld as pw | |
import numpy as np | |
import soundfile as sf | |
import os | |
from torchaudio.functional import pitch_shift | |
import librosa | |
from librosa.filters import mel as librosa_mel_fn | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) | |
def dynamic_range_decompression(x, C=1): | |
return np.exp(x) / C | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
output = dynamic_range_compression_torch(magnitudes) | |
return output | |
def spectral_de_normalize_torch(magnitudes): | |
output = dynamic_range_decompression_torch(magnitudes) | |
return output | |
class MelSpectrogram(nn.Module): | |
def __init__( | |
self, | |
n_fft, | |
num_mels, | |
sampling_rate, | |
hop_size, | |
win_size, | |
fmin, | |
fmax, | |
center=False, | |
): | |
super(MelSpectrogram, self).__init__() | |
self.n_fft = n_fft | |
self.hop_size = hop_size | |
self.win_size = win_size | |
self.sampling_rate = sampling_rate | |
self.num_mels = num_mels | |
self.fmin = fmin | |
self.fmax = fmax | |
self.center = center | |
mel_basis = {} | |
hann_window = {} | |
mel = librosa_mel_fn( | |
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax | |
) | |
mel_basis = torch.from_numpy(mel).float() | |
hann_window = torch.hann_window(win_size) | |
self.register_buffer("mel_basis", mel_basis) | |
self.register_buffer("hann_window", hann_window) | |
def forward(self, y): | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
( | |
int((self.n_fft - self.hop_size) / 2), | |
int((self.n_fft - self.hop_size) / 2), | |
), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
spec = torch.stft( | |
y, | |
self.n_fft, | |
hop_length=self.hop_size, | |
win_length=self.win_size, | |
window=self.hann_window, | |
center=self.center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) | |
spec = torch.matmul(self.mel_basis, spec) | |
spec = spectral_normalize_torch(spec) | |
return spec | |