Hecheng0625's picture
Upload 409 files
c968fc3 verified
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import shutil
import json
import time
import torch
import numpy as np
from utils.util import Logger, ValueWindow
from torch.utils.data import ConcatDataset, DataLoader
from models.tts.base.tts_trainer import TTSTrainer
from models.base.base_trainer import BaseTrainer
from models.base.base_sampler import VariableSampler
from models.tts.naturalspeech2.ns2_dataset import NS2Dataset, NS2Collator, batch_by_size
from models.tts.naturalspeech2.ns2_loss import (
log_pitch_loss,
log_dur_loss,
diff_loss,
diff_ce_loss,
)
from torch.utils.data.sampler import BatchSampler, SequentialSampler
from models.tts.naturalspeech2.ns2 import NaturalSpeech2
from torch.optim import Adam, AdamW
from torch.nn import MSELoss, L1Loss
import torch.nn.functional as F
from diffusers import get_scheduler
import accelerate
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
class NS2Trainer(TTSTrainer):
def __init__(self, args, cfg):
self.args = args
self.cfg = cfg
cfg.exp_name = args.exp_name
self._init_accelerator()
self.accelerator.wait_for_everyone()
# Init logger
with self.accelerator.main_process_first():
if self.accelerator.is_main_process:
os.makedirs(os.path.join(self.exp_dir, "checkpoint"), exist_ok=True)
self.log_file = os.path.join(
os.path.join(self.exp_dir, "checkpoint"), "train.log"
)
self.logger = Logger(self.log_file, level=self.args.log_level).logger
self.time_window = ValueWindow(50)
if self.accelerator.is_main_process:
# Log some info
self.logger.info("=" * 56)
self.logger.info("||\t\t" + "New training process started." + "\t\t||")
self.logger.info("=" * 56)
self.logger.info("\n")
self.logger.debug(f"Using {args.log_level.upper()} logging level.")
self.logger.info(f"Experiment name: {args.exp_name}")
self.logger.info(f"Experiment directory: {self.exp_dir}")
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
if self.accelerator.is_main_process:
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
# init counts
self.batch_count: int = 0
self.step: int = 0
self.epoch: int = 0
self.max_epoch = (
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
)
if self.accelerator.is_main_process:
self.logger.info(
"Max epoch: {}".format(
self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
)
)
# Check values
if self.accelerator.is_main_process:
self._check_basic_configs()
# Set runtime configs
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
self.checkpoints_path = [
[] for _ in range(len(self.save_checkpoint_stride))
]
self.keep_last = [
i if i > 0 else float("inf") for i in self.cfg.train.keep_last
]
self.run_eval = self.cfg.train.run_eval
# set random seed
with self.accelerator.main_process_first():
start = time.monotonic_ns()
self._set_random_seed(self.cfg.train.random_seed)
end = time.monotonic_ns()
if self.accelerator.is_main_process:
self.logger.debug(
f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
)
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")
# setup data_loader
with self.accelerator.main_process_first():
if self.accelerator.is_main_process:
self.logger.info("Building dataset...")
start = time.monotonic_ns()
self.train_dataloader, self.valid_dataloader = self._build_dataloader()
end = time.monotonic_ns()
if self.accelerator.is_main_process:
self.logger.info(
f"Building dataset done in {(end - start) / 1e6:.2f}ms"
)
# setup model
with self.accelerator.main_process_first():
if self.accelerator.is_main_process:
self.logger.info("Building model...")
start = time.monotonic_ns()
self.model = self._build_model()
end = time.monotonic_ns()
if self.accelerator.is_main_process:
self.logger.debug(self.model)
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
self.logger.info(
f"Model parameters: {self._count_parameters(self.model)/1e6:.2f}M"
)
# optimizer & scheduler
with self.accelerator.main_process_first():
if self.accelerator.is_main_process:
self.logger.info("Building optimizer and scheduler...")
start = time.monotonic_ns()
self.optimizer = self._build_optimizer()
self.scheduler = self._build_scheduler()
end = time.monotonic_ns()
if self.accelerator.is_main_process:
self.logger.info(
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
)
# accelerate prepare
if not self.cfg.train.use_dynamic_batchsize:
if self.accelerator.is_main_process:
self.logger.info("Initializing accelerate...")
start = time.monotonic_ns()
(
self.train_dataloader,
self.valid_dataloader,
) = self.accelerator.prepare(
self.train_dataloader,
self.valid_dataloader,
)
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key] = self.accelerator.prepare(self.model[key])
else:
self.model = self.accelerator.prepare(self.model)
if isinstance(self.optimizer, dict):
for key in self.optimizer.keys():
self.optimizer[key] = self.accelerator.prepare(self.optimizer[key])
else:
self.optimizer = self.accelerator.prepare(self.optimizer)
if isinstance(self.scheduler, dict):
for key in self.scheduler.keys():
self.scheduler[key] = self.accelerator.prepare(self.scheduler[key])
else:
self.scheduler = self.accelerator.prepare(self.scheduler)
end = time.monotonic_ns()
if self.accelerator.is_main_process:
self.logger.info(
f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms"
)
# create criterion
with self.accelerator.main_process_first():
if self.accelerator.is_main_process:
self.logger.info("Building criterion...")
start = time.monotonic_ns()
self.criterion = self._build_criterion()
end = time.monotonic_ns()
if self.accelerator.is_main_process:
self.logger.info(
f"Building criterion done in {(end - start) / 1e6:.2f}ms"
)
# TODO: Resume from ckpt need test/debug
with self.accelerator.main_process_first():
if args.resume:
if self.accelerator.is_main_process:
self.logger.info("Resuming from checkpoint...")
start = time.monotonic_ns()
ckpt_path = self._load_model(
self.checkpoint_dir,
args.checkpoint_path,
resume_type=args.resume_type,
)
end = time.monotonic_ns()
if self.accelerator.is_main_process:
self.logger.info(
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
)
self.checkpoints_path = json.load(
open(os.path.join(ckpt_path, "ckpts.json"), "r")
)
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
if self.accelerator.is_main_process:
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
# save config file path
self.config_save_path = os.path.join(self.exp_dir, "args.json")
# Only for TTS tasks
self.task_type = "TTS"
if self.accelerator.is_main_process:
self.logger.info("Task type: {}".format(self.task_type))
def _init_accelerator(self):
self.exp_dir = os.path.join(
os.path.abspath(self.cfg.log_dir), self.args.exp_name
)
project_config = ProjectConfiguration(
project_dir=self.exp_dir,
logging_dir=os.path.join(self.exp_dir, "log"),
)
# ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
self.accelerator = accelerate.Accelerator(
gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step,
log_with=self.cfg.train.tracker,
project_config=project_config,
# kwargs_handlers=[ddp_kwargs]
)
if self.accelerator.is_main_process:
os.makedirs(project_config.project_dir, exist_ok=True)
os.makedirs(project_config.logging_dir, exist_ok=True)
with self.accelerator.main_process_first():
self.accelerator.init_trackers(self.args.exp_name)
def _build_model(self):
model = NaturalSpeech2(cfg=self.cfg.model)
return model
def _build_dataset(self):
return NS2Dataset, NS2Collator
def _build_dataloader(self):
if self.cfg.train.use_dynamic_batchsize:
print("Use Dynamic Batchsize......")
Dataset, Collator = self._build_dataset()
train_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=False)
train_collate = Collator(self.cfg)
batch_sampler = batch_by_size(
train_dataset.num_frame_indices,
train_dataset.get_num_frames,
max_tokens=self.cfg.train.max_tokens * self.accelerator.num_processes,
max_sentences=self.cfg.train.max_sentences
* self.accelerator.num_processes,
required_batch_size_multiple=self.accelerator.num_processes,
)
np.random.seed(980205)
np.random.shuffle(batch_sampler)
print(batch_sampler[:1])
batches = [
x[
self.accelerator.local_process_index :: self.accelerator.num_processes
]
for x in batch_sampler
if len(x) % self.accelerator.num_processes == 0
]
train_loader = DataLoader(
train_dataset,
collate_fn=train_collate,
num_workers=self.cfg.train.dataloader.num_worker,
batch_sampler=VariableSampler(
batches, drop_last=False, use_random_sampler=True
),
pin_memory=self.cfg.train.dataloader.pin_memory,
)
self.accelerator.wait_for_everyone()
valid_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=True)
valid_collate = Collator(self.cfg)
batch_sampler = batch_by_size(
valid_dataset.num_frame_indices,
valid_dataset.get_num_frames,
max_tokens=self.cfg.train.max_tokens * self.accelerator.num_processes,
max_sentences=self.cfg.train.max_sentences
* self.accelerator.num_processes,
required_batch_size_multiple=self.accelerator.num_processes,
)
batches = [
x[
self.accelerator.local_process_index :: self.accelerator.num_processes
]
for x in batch_sampler
if len(x) % self.accelerator.num_processes == 0
]
valid_loader = DataLoader(
valid_dataset,
collate_fn=valid_collate,
num_workers=self.cfg.train.dataloader.num_worker,
batch_sampler=VariableSampler(batches, drop_last=False),
pin_memory=self.cfg.train.dataloader.pin_memory,
)
self.accelerator.wait_for_everyone()
else:
print("Use Normal Batchsize......")
Dataset, Collator = self._build_dataset()
train_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=False)
train_collate = Collator(self.cfg)
train_loader = DataLoader(
train_dataset,
shuffle=True,
collate_fn=train_collate,
batch_size=self.cfg.train.batch_size,
num_workers=self.cfg.train.dataloader.num_worker,
pin_memory=self.cfg.train.dataloader.pin_memory,
)
valid_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=True)
valid_collate = Collator(self.cfg)
valid_loader = DataLoader(
valid_dataset,
shuffle=True,
collate_fn=valid_collate,
batch_size=self.cfg.train.batch_size,
num_workers=self.cfg.train.dataloader.num_worker,
pin_memory=self.cfg.train.dataloader.pin_memory,
)
self.accelerator.wait_for_everyone()
return train_loader, valid_loader
def _build_optimizer(self):
optimizer = torch.optim.AdamW(
filter(lambda p: p.requires_grad, self.model.parameters()),
**self.cfg.train.adam,
)
return optimizer
def _build_scheduler(self):
lr_scheduler = get_scheduler(
self.cfg.train.lr_scheduler,
optimizer=self.optimizer,
num_warmup_steps=self.cfg.train.lr_warmup_steps,
num_training_steps=self.cfg.train.num_train_steps,
)
return lr_scheduler
def _build_criterion(self):
criterion = torch.nn.L1Loss(reduction="mean")
return criterion
def write_summary(self, losses, stats):
for key, value in losses.items():
self.sw.add_scalar(key, value, self.step)
def write_valid_summary(self, losses, stats):
for key, value in losses.items():
self.sw.add_scalar(key, value, self.step)
def get_state_dict(self):
state_dict = {
"model": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"scheduler": self.scheduler.state_dict(),
"step": self.step,
"epoch": self.epoch,
"batch_size": self.cfg.train.batch_size,
}
return state_dict
def load_model(self, checkpoint):
self.step = checkpoint["step"]
self.epoch = checkpoint["epoch"]
self.model.load_state_dict(checkpoint["model"])
self.optimizer.load_state_dict(checkpoint["optimizer"])
self.scheduler.load_state_dict(checkpoint["scheduler"])
def _train_step(self, batch):
train_losses = {}
total_loss = 0
train_stats = {}
code = batch["code"] # (B, 16, T)
pitch = batch["pitch"] # (B, T)
duration = batch["duration"] # (B, N)
phone_id = batch["phone_id"] # (B, N)
ref_code = batch["ref_code"] # (B, 16, T')
phone_mask = batch["phone_mask"] # (B, N)
mask = batch["mask"] # (B, T)
ref_mask = batch["ref_mask"] # (B, T')
diff_out, prior_out = self.model(
code=code,
pitch=pitch,
duration=duration,
phone_id=phone_id,
ref_code=ref_code,
phone_mask=phone_mask,
mask=mask,
ref_mask=ref_mask,
)
# pitch loss
pitch_loss = log_pitch_loss(prior_out["pitch_pred_log"], pitch, mask=mask)
total_loss += pitch_loss
train_losses["pitch_loss"] = pitch_loss
# duration loss
dur_loss = log_dur_loss(prior_out["dur_pred_log"], duration, mask=phone_mask)
total_loss += dur_loss
train_losses["dur_loss"] = dur_loss
x0 = self.model.module.code_to_latent(code)
if self.cfg.model.diffusion.diffusion_type == "diffusion":
# diff loss x0
diff_loss_x0 = diff_loss(diff_out["x0_pred"], x0, mask=mask)
total_loss += diff_loss_x0
train_losses["diff_loss_x0"] = diff_loss_x0
# diff loss noise
diff_loss_noise = diff_loss(
diff_out["noise_pred"], diff_out["noise"], mask=mask
)
total_loss += diff_loss_noise * self.cfg.train.diff_noise_loss_lambda
train_losses["diff_loss_noise"] = diff_loss_noise
elif self.cfg.model.diffusion.diffusion_type == "flow":
# diff flow matching loss
flow_gt = diff_out["noise"] - x0
diff_loss_flow = diff_loss(diff_out["flow_pred"], flow_gt, mask=mask)
total_loss += diff_loss_flow
train_losses["diff_loss_flow"] = diff_loss_flow
# diff loss ce
# (nq, B, T); (nq, B, T, 1024)
if self.cfg.train.diff_ce_loss_lambda > 0:
pred_indices, pred_dist = self.model.module.latent_to_code(
diff_out["x0_pred"], nq=code.shape[1]
)
gt_indices, _ = self.model.module.latent_to_code(x0, nq=code.shape[1])
diff_loss_ce = diff_ce_loss(pred_dist, gt_indices, mask=mask)
total_loss += diff_loss_ce * self.cfg.train.diff_ce_loss_lambda
train_losses["diff_loss_ce"] = diff_loss_ce
self.optimizer.zero_grad()
# total_loss.backward()
self.accelerator.backward(total_loss)
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(
filter(lambda p: p.requires_grad, self.model.parameters()), 0.5
)
self.optimizer.step()
self.scheduler.step()
for item in train_losses:
train_losses[item] = train_losses[item].item()
if self.cfg.train.diff_ce_loss_lambda > 0:
pred_indices_list = pred_indices.long().detach().cpu().numpy()
gt_indices_list = gt_indices.long().detach().cpu().numpy()
mask_list = batch["mask"].detach().cpu().numpy()
for i in range(pred_indices_list.shape[0]):
pred_acc = np.sum(
(pred_indices_list[i] == gt_indices_list[i]) * mask_list
) / np.sum(mask_list)
train_losses["pred_acc_{}".format(str(i))] = pred_acc
train_losses["batch_size"] = code.shape[0]
train_losses["max_frame_nums"] = np.max(
batch["frame_nums"].detach().cpu().numpy()
)
return (total_loss.item(), train_losses, train_stats)
@torch.inference_mode()
def _valid_step(self, batch):
valid_losses = {}
total_loss = 0
valid_stats = {}
code = batch["code"] # (B, 16, T)
pitch = batch["pitch"] # (B, T)
duration = batch["duration"] # (B, N)
phone_id = batch["phone_id"] # (B, N)
ref_code = batch["ref_code"] # (B, 16, T')
phone_mask = batch["phone_mask"] # (B, N)
mask = batch["mask"] # (B, T)
ref_mask = batch["ref_mask"] # (B, T')
diff_out, prior_out = self.model(
code=code,
pitch=pitch,
duration=duration,
phone_id=phone_id,
ref_code=ref_code,
phone_mask=phone_mask,
mask=mask,
ref_mask=ref_mask,
)
# pitch loss
pitch_loss = log_pitch_loss(prior_out["pitch_pred_log"], pitch, mask=mask)
total_loss += pitch_loss
valid_losses["pitch_loss"] = pitch_loss
# duration loss
dur_loss = log_dur_loss(prior_out["dur_pred_log"], duration, mask=phone_mask)
total_loss += dur_loss
valid_losses["dur_loss"] = dur_loss
x0 = self.model.module.code_to_latent(code)
if self.cfg.model.diffusion.diffusion_type == "diffusion":
# diff loss x0
diff_loss_x0 = diff_loss(diff_out["x0_pred"], x0, mask=mask)
total_loss += diff_loss_x0
valid_losses["diff_loss_x0"] = diff_loss_x0
# diff loss noise
diff_loss_noise = diff_loss(
diff_out["noise_pred"], diff_out["noise"], mask=mask
)
total_loss += diff_loss_noise * self.cfg.train.diff_noise_loss_lambda
valid_losses["diff_loss_noise"] = diff_loss_noise
elif self.cfg.model.diffusion.diffusion_type == "flow":
# diff flow matching loss
flow_gt = diff_out["noise"] - x0
diff_loss_flow = diff_loss(diff_out["flow_pred"], flow_gt, mask=mask)
total_loss += diff_loss_flow
valid_losses["diff_loss_flow"] = diff_loss_flow
# diff loss ce
# (nq, B, T); (nq, B, T, 1024)
if self.cfg.train.diff_ce_loss_lambda > 0:
pred_indices, pred_dist = self.model.module.latent_to_code(
diff_out["x0_pred"], nq=code.shape[1]
)
gt_indices, _ = self.model.module.latent_to_code(x0, nq=code.shape[1])
diff_loss_ce = diff_ce_loss(pred_dist, gt_indices, mask=mask)
total_loss += diff_loss_ce * self.cfg.train.diff_ce_loss_lambda
valid_losses["diff_loss_ce"] = diff_loss_ce
for item in valid_losses:
valid_losses[item] = valid_losses[item].item()
if self.cfg.train.diff_ce_loss_lambda > 0:
pred_indices_list = pred_indices.long().detach().cpu().numpy()
gt_indices_list = gt_indices.long().detach().cpu().numpy()
mask_list = batch["mask"].detach().cpu().numpy()
for i in range(pred_indices_list.shape[0]):
pred_acc = np.sum(
(pred_indices_list[i] == gt_indices_list[i]) * mask_list
) / np.sum(mask_list)
valid_losses["pred_acc_{}".format(str(i))] = pred_acc
return (total_loss.item(), valid_losses, valid_stats)
@torch.inference_mode()
def _valid_epoch(self):
r"""Testing epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key].eval()
else:
self.model.eval()
epoch_sum_loss = 0.0
epoch_losses = dict()
for batch in self.valid_dataloader:
# Put the data to cuda device
device = self.accelerator.device
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.to(device)
total_loss, valid_losses, valid_stats = self._valid_step(batch)
epoch_sum_loss = total_loss
for key, value in valid_losses.items():
epoch_losses[key] = value
self.accelerator.wait_for_everyone()
return epoch_sum_loss, epoch_losses
def _train_epoch(self):
r"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key].train()
else:
self.model.train()
epoch_sum_loss: float = 0.0
epoch_losses: dict = {}
epoch_step: int = 0
for batch in self.train_dataloader:
# Put the data to cuda device
device = self.accelerator.device
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.to(device)
# Do training step and BP
with self.accelerator.accumulate(self.model):
total_loss, train_losses, training_stats = self._train_step(batch)
self.batch_count += 1
# Update info for each step
# TODO: step means BP counts or batch counts?
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
epoch_sum_loss = total_loss
for key, value in train_losses.items():
epoch_losses[key] = value
if isinstance(train_losses, dict):
for key, loss in train_losses.items():
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.step,
)
if (
self.accelerator.is_main_process
and self.batch_count
% (1 * self.cfg.train.gradient_accumulation_step)
== 0
):
self.echo_log(train_losses, mode="Training")
self.step += 1
epoch_step += 1
self.accelerator.wait_for_everyone()
return epoch_sum_loss, epoch_losses
def train_loop(self):
r"""Training loop. The public entry of training process."""
# Wait everyone to prepare before we move on
self.accelerator.wait_for_everyone()
# dump config file
if self.accelerator.is_main_process:
self._dump_cfg(self.config_save_path)
# self.optimizer.zero_grad()
# Wait to ensure good to go
self.accelerator.wait_for_everyone()
while self.epoch < self.max_epoch:
if self.accelerator.is_main_process:
self.logger.info("\n")
self.logger.info("-" * 32)
self.logger.info("Epoch {}: ".format(self.epoch))
# Do training & validating epoch
train_total_loss, train_losses = self._train_epoch()
if isinstance(train_losses, dict):
for key, loss in train_losses.items():
if self.accelerator.is_main_process:
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.epoch,
)
valid_total_loss, valid_losses = self._valid_epoch()
if isinstance(valid_losses, dict):
for key, loss in valid_losses.items():
if self.accelerator.is_main_process:
self.logger.info(" |- Valid/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.epoch,
)
if self.accelerator.is_main_process:
self.logger.info(" |- Train/Loss: {:.6f}".format(train_total_loss))
self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_total_loss))
self.accelerator.log(
{
"Epoch/Train Loss": train_total_loss,
"Epoch/Valid Loss": valid_total_loss,
},
step=self.epoch,
)
self.accelerator.wait_for_everyone()
if isinstance(self.scheduler, dict):
for key in self.scheduler.keys():
self.scheduler[key].step()
else:
self.scheduler.step()
# Check if hit save_checkpoint_stride and run_eval
run_eval = False
if self.accelerator.is_main_process:
save_checkpoint = False
hit_dix = []
for i, num in enumerate(self.save_checkpoint_stride):
if self.epoch % num == 0:
save_checkpoint = True
hit_dix.append(i)
run_eval |= self.run_eval[i]
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process and save_checkpoint:
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, train_total_loss
),
)
print("save state......")
self.accelerator.save_state(path)
print("finish saving state......")
json.dump(
self.checkpoints_path,
open(os.path.join(path, "ckpts.json"), "w"),
ensure_ascii=False,
indent=4,
)
# Remove old checkpoints
to_remove = []
for idx in hit_dix:
self.checkpoints_path[idx].append(path)
while len(self.checkpoints_path[idx]) > self.keep_last[idx]:
to_remove.append((idx, self.checkpoints_path[idx].pop(0)))
# Search conflicts
total = set()
for i in self.checkpoints_path:
total |= set(i)
do_remove = set()
for idx, path in to_remove[::-1]:
if path in total:
self.checkpoints_path[idx].insert(0, path)
else:
do_remove.add(path)
# Remove old checkpoints
for path in do_remove:
shutil.rmtree(path, ignore_errors=True)
if self.accelerator.is_main_process:
self.logger.debug(f"Remove old checkpoint: {path}")
self.accelerator.wait_for_everyone()
if run_eval:
# TODO: run evaluation
pass
# Update info for each epoch
self.epoch += 1
# Finish training and save final checkpoint
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
self.accelerator.save_state(
os.path.join(
self.checkpoint_dir,
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_total_loss
),
)
)
self.accelerator.end_training()