Spaces:
Runtime error
Runtime error
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import shutil | |
import json | |
import time | |
import torch | |
import numpy as np | |
from utils.util import Logger, ValueWindow | |
from torch.utils.data import ConcatDataset, DataLoader | |
from models.tts.base.tts_trainer import TTSTrainer | |
from models.base.base_trainer import BaseTrainer | |
from models.base.base_sampler import VariableSampler | |
from models.tts.naturalspeech2.ns2_dataset import NS2Dataset, NS2Collator, batch_by_size | |
from models.tts.naturalspeech2.ns2_loss import ( | |
log_pitch_loss, | |
log_dur_loss, | |
diff_loss, | |
diff_ce_loss, | |
) | |
from torch.utils.data.sampler import BatchSampler, SequentialSampler | |
from models.tts.naturalspeech2.ns2 import NaturalSpeech2 | |
from torch.optim import Adam, AdamW | |
from torch.nn import MSELoss, L1Loss | |
import torch.nn.functional as F | |
from diffusers import get_scheduler | |
import accelerate | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration | |
class NS2Trainer(TTSTrainer): | |
def __init__(self, args, cfg): | |
self.args = args | |
self.cfg = cfg | |
cfg.exp_name = args.exp_name | |
self._init_accelerator() | |
self.accelerator.wait_for_everyone() | |
# Init logger | |
with self.accelerator.main_process_first(): | |
if self.accelerator.is_main_process: | |
os.makedirs(os.path.join(self.exp_dir, "checkpoint"), exist_ok=True) | |
self.log_file = os.path.join( | |
os.path.join(self.exp_dir, "checkpoint"), "train.log" | |
) | |
self.logger = Logger(self.log_file, level=self.args.log_level).logger | |
self.time_window = ValueWindow(50) | |
if self.accelerator.is_main_process: | |
# Log some info | |
self.logger.info("=" * 56) | |
self.logger.info("||\t\t" + "New training process started." + "\t\t||") | |
self.logger.info("=" * 56) | |
self.logger.info("\n") | |
self.logger.debug(f"Using {args.log_level.upper()} logging level.") | |
self.logger.info(f"Experiment name: {args.exp_name}") | |
self.logger.info(f"Experiment directory: {self.exp_dir}") | |
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") | |
if self.accelerator.is_main_process: | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
if self.accelerator.is_main_process: | |
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") | |
# init counts | |
self.batch_count: int = 0 | |
self.step: int = 0 | |
self.epoch: int = 0 | |
self.max_epoch = ( | |
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf") | |
) | |
if self.accelerator.is_main_process: | |
self.logger.info( | |
"Max epoch: {}".format( | |
self.max_epoch if self.max_epoch < float("inf") else "Unlimited" | |
) | |
) | |
# Check values | |
if self.accelerator.is_main_process: | |
self._check_basic_configs() | |
# Set runtime configs | |
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride | |
self.checkpoints_path = [ | |
[] for _ in range(len(self.save_checkpoint_stride)) | |
] | |
self.keep_last = [ | |
i if i > 0 else float("inf") for i in self.cfg.train.keep_last | |
] | |
self.run_eval = self.cfg.train.run_eval | |
# set random seed | |
with self.accelerator.main_process_first(): | |
start = time.monotonic_ns() | |
self._set_random_seed(self.cfg.train.random_seed) | |
end = time.monotonic_ns() | |
if self.accelerator.is_main_process: | |
self.logger.debug( | |
f"Setting random seed done in {(end - start) / 1e6:.2f}ms" | |
) | |
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}") | |
# setup data_loader | |
with self.accelerator.main_process_first(): | |
if self.accelerator.is_main_process: | |
self.logger.info("Building dataset...") | |
start = time.monotonic_ns() | |
self.train_dataloader, self.valid_dataloader = self._build_dataloader() | |
end = time.monotonic_ns() | |
if self.accelerator.is_main_process: | |
self.logger.info( | |
f"Building dataset done in {(end - start) / 1e6:.2f}ms" | |
) | |
# setup model | |
with self.accelerator.main_process_first(): | |
if self.accelerator.is_main_process: | |
self.logger.info("Building model...") | |
start = time.monotonic_ns() | |
self.model = self._build_model() | |
end = time.monotonic_ns() | |
if self.accelerator.is_main_process: | |
self.logger.debug(self.model) | |
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms") | |
self.logger.info( | |
f"Model parameters: {self._count_parameters(self.model)/1e6:.2f}M" | |
) | |
# optimizer & scheduler | |
with self.accelerator.main_process_first(): | |
if self.accelerator.is_main_process: | |
self.logger.info("Building optimizer and scheduler...") | |
start = time.monotonic_ns() | |
self.optimizer = self._build_optimizer() | |
self.scheduler = self._build_scheduler() | |
end = time.monotonic_ns() | |
if self.accelerator.is_main_process: | |
self.logger.info( | |
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms" | |
) | |
# accelerate prepare | |
if not self.cfg.train.use_dynamic_batchsize: | |
if self.accelerator.is_main_process: | |
self.logger.info("Initializing accelerate...") | |
start = time.monotonic_ns() | |
( | |
self.train_dataloader, | |
self.valid_dataloader, | |
) = self.accelerator.prepare( | |
self.train_dataloader, | |
self.valid_dataloader, | |
) | |
if isinstance(self.model, dict): | |
for key in self.model.keys(): | |
self.model[key] = self.accelerator.prepare(self.model[key]) | |
else: | |
self.model = self.accelerator.prepare(self.model) | |
if isinstance(self.optimizer, dict): | |
for key in self.optimizer.keys(): | |
self.optimizer[key] = self.accelerator.prepare(self.optimizer[key]) | |
else: | |
self.optimizer = self.accelerator.prepare(self.optimizer) | |
if isinstance(self.scheduler, dict): | |
for key in self.scheduler.keys(): | |
self.scheduler[key] = self.accelerator.prepare(self.scheduler[key]) | |
else: | |
self.scheduler = self.accelerator.prepare(self.scheduler) | |
end = time.monotonic_ns() | |
if self.accelerator.is_main_process: | |
self.logger.info( | |
f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms" | |
) | |
# create criterion | |
with self.accelerator.main_process_first(): | |
if self.accelerator.is_main_process: | |
self.logger.info("Building criterion...") | |
start = time.monotonic_ns() | |
self.criterion = self._build_criterion() | |
end = time.monotonic_ns() | |
if self.accelerator.is_main_process: | |
self.logger.info( | |
f"Building criterion done in {(end - start) / 1e6:.2f}ms" | |
) | |
# TODO: Resume from ckpt need test/debug | |
with self.accelerator.main_process_first(): | |
if args.resume: | |
if self.accelerator.is_main_process: | |
self.logger.info("Resuming from checkpoint...") | |
start = time.monotonic_ns() | |
ckpt_path = self._load_model( | |
self.checkpoint_dir, | |
args.checkpoint_path, | |
resume_type=args.resume_type, | |
) | |
end = time.monotonic_ns() | |
if self.accelerator.is_main_process: | |
self.logger.info( | |
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms" | |
) | |
self.checkpoints_path = json.load( | |
open(os.path.join(ckpt_path, "ckpts.json"), "r") | |
) | |
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") | |
if self.accelerator.is_main_process: | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
if self.accelerator.is_main_process: | |
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") | |
# save config file path | |
self.config_save_path = os.path.join(self.exp_dir, "args.json") | |
# Only for TTS tasks | |
self.task_type = "TTS" | |
if self.accelerator.is_main_process: | |
self.logger.info("Task type: {}".format(self.task_type)) | |
def _init_accelerator(self): | |
self.exp_dir = os.path.join( | |
os.path.abspath(self.cfg.log_dir), self.args.exp_name | |
) | |
project_config = ProjectConfiguration( | |
project_dir=self.exp_dir, | |
logging_dir=os.path.join(self.exp_dir, "log"), | |
) | |
# ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
self.accelerator = accelerate.Accelerator( | |
gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step, | |
log_with=self.cfg.train.tracker, | |
project_config=project_config, | |
# kwargs_handlers=[ddp_kwargs] | |
) | |
if self.accelerator.is_main_process: | |
os.makedirs(project_config.project_dir, exist_ok=True) | |
os.makedirs(project_config.logging_dir, exist_ok=True) | |
with self.accelerator.main_process_first(): | |
self.accelerator.init_trackers(self.args.exp_name) | |
def _build_model(self): | |
model = NaturalSpeech2(cfg=self.cfg.model) | |
return model | |
def _build_dataset(self): | |
return NS2Dataset, NS2Collator | |
def _build_dataloader(self): | |
if self.cfg.train.use_dynamic_batchsize: | |
print("Use Dynamic Batchsize......") | |
Dataset, Collator = self._build_dataset() | |
train_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=False) | |
train_collate = Collator(self.cfg) | |
batch_sampler = batch_by_size( | |
train_dataset.num_frame_indices, | |
train_dataset.get_num_frames, | |
max_tokens=self.cfg.train.max_tokens * self.accelerator.num_processes, | |
max_sentences=self.cfg.train.max_sentences | |
* self.accelerator.num_processes, | |
required_batch_size_multiple=self.accelerator.num_processes, | |
) | |
np.random.seed(980205) | |
np.random.shuffle(batch_sampler) | |
print(batch_sampler[:1]) | |
batches = [ | |
x[ | |
self.accelerator.local_process_index :: self.accelerator.num_processes | |
] | |
for x in batch_sampler | |
if len(x) % self.accelerator.num_processes == 0 | |
] | |
train_loader = DataLoader( | |
train_dataset, | |
collate_fn=train_collate, | |
num_workers=self.cfg.train.dataloader.num_worker, | |
batch_sampler=VariableSampler( | |
batches, drop_last=False, use_random_sampler=True | |
), | |
pin_memory=self.cfg.train.dataloader.pin_memory, | |
) | |
self.accelerator.wait_for_everyone() | |
valid_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=True) | |
valid_collate = Collator(self.cfg) | |
batch_sampler = batch_by_size( | |
valid_dataset.num_frame_indices, | |
valid_dataset.get_num_frames, | |
max_tokens=self.cfg.train.max_tokens * self.accelerator.num_processes, | |
max_sentences=self.cfg.train.max_sentences | |
* self.accelerator.num_processes, | |
required_batch_size_multiple=self.accelerator.num_processes, | |
) | |
batches = [ | |
x[ | |
self.accelerator.local_process_index :: self.accelerator.num_processes | |
] | |
for x in batch_sampler | |
if len(x) % self.accelerator.num_processes == 0 | |
] | |
valid_loader = DataLoader( | |
valid_dataset, | |
collate_fn=valid_collate, | |
num_workers=self.cfg.train.dataloader.num_worker, | |
batch_sampler=VariableSampler(batches, drop_last=False), | |
pin_memory=self.cfg.train.dataloader.pin_memory, | |
) | |
self.accelerator.wait_for_everyone() | |
else: | |
print("Use Normal Batchsize......") | |
Dataset, Collator = self._build_dataset() | |
train_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=False) | |
train_collate = Collator(self.cfg) | |
train_loader = DataLoader( | |
train_dataset, | |
shuffle=True, | |
collate_fn=train_collate, | |
batch_size=self.cfg.train.batch_size, | |
num_workers=self.cfg.train.dataloader.num_worker, | |
pin_memory=self.cfg.train.dataloader.pin_memory, | |
) | |
valid_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=True) | |
valid_collate = Collator(self.cfg) | |
valid_loader = DataLoader( | |
valid_dataset, | |
shuffle=True, | |
collate_fn=valid_collate, | |
batch_size=self.cfg.train.batch_size, | |
num_workers=self.cfg.train.dataloader.num_worker, | |
pin_memory=self.cfg.train.dataloader.pin_memory, | |
) | |
self.accelerator.wait_for_everyone() | |
return train_loader, valid_loader | |
def _build_optimizer(self): | |
optimizer = torch.optim.AdamW( | |
filter(lambda p: p.requires_grad, self.model.parameters()), | |
**self.cfg.train.adam, | |
) | |
return optimizer | |
def _build_scheduler(self): | |
lr_scheduler = get_scheduler( | |
self.cfg.train.lr_scheduler, | |
optimizer=self.optimizer, | |
num_warmup_steps=self.cfg.train.lr_warmup_steps, | |
num_training_steps=self.cfg.train.num_train_steps, | |
) | |
return lr_scheduler | |
def _build_criterion(self): | |
criterion = torch.nn.L1Loss(reduction="mean") | |
return criterion | |
def write_summary(self, losses, stats): | |
for key, value in losses.items(): | |
self.sw.add_scalar(key, value, self.step) | |
def write_valid_summary(self, losses, stats): | |
for key, value in losses.items(): | |
self.sw.add_scalar(key, value, self.step) | |
def get_state_dict(self): | |
state_dict = { | |
"model": self.model.state_dict(), | |
"optimizer": self.optimizer.state_dict(), | |
"scheduler": self.scheduler.state_dict(), | |
"step": self.step, | |
"epoch": self.epoch, | |
"batch_size": self.cfg.train.batch_size, | |
} | |
return state_dict | |
def load_model(self, checkpoint): | |
self.step = checkpoint["step"] | |
self.epoch = checkpoint["epoch"] | |
self.model.load_state_dict(checkpoint["model"]) | |
self.optimizer.load_state_dict(checkpoint["optimizer"]) | |
self.scheduler.load_state_dict(checkpoint["scheduler"]) | |
def _train_step(self, batch): | |
train_losses = {} | |
total_loss = 0 | |
train_stats = {} | |
code = batch["code"] # (B, 16, T) | |
pitch = batch["pitch"] # (B, T) | |
duration = batch["duration"] # (B, N) | |
phone_id = batch["phone_id"] # (B, N) | |
ref_code = batch["ref_code"] # (B, 16, T') | |
phone_mask = batch["phone_mask"] # (B, N) | |
mask = batch["mask"] # (B, T) | |
ref_mask = batch["ref_mask"] # (B, T') | |
diff_out, prior_out = self.model( | |
code=code, | |
pitch=pitch, | |
duration=duration, | |
phone_id=phone_id, | |
ref_code=ref_code, | |
phone_mask=phone_mask, | |
mask=mask, | |
ref_mask=ref_mask, | |
) | |
# pitch loss | |
pitch_loss = log_pitch_loss(prior_out["pitch_pred_log"], pitch, mask=mask) | |
total_loss += pitch_loss | |
train_losses["pitch_loss"] = pitch_loss | |
# duration loss | |
dur_loss = log_dur_loss(prior_out["dur_pred_log"], duration, mask=phone_mask) | |
total_loss += dur_loss | |
train_losses["dur_loss"] = dur_loss | |
x0 = self.model.module.code_to_latent(code) | |
if self.cfg.model.diffusion.diffusion_type == "diffusion": | |
# diff loss x0 | |
diff_loss_x0 = diff_loss(diff_out["x0_pred"], x0, mask=mask) | |
total_loss += diff_loss_x0 | |
train_losses["diff_loss_x0"] = diff_loss_x0 | |
# diff loss noise | |
diff_loss_noise = diff_loss( | |
diff_out["noise_pred"], diff_out["noise"], mask=mask | |
) | |
total_loss += diff_loss_noise * self.cfg.train.diff_noise_loss_lambda | |
train_losses["diff_loss_noise"] = diff_loss_noise | |
elif self.cfg.model.diffusion.diffusion_type == "flow": | |
# diff flow matching loss | |
flow_gt = diff_out["noise"] - x0 | |
diff_loss_flow = diff_loss(diff_out["flow_pred"], flow_gt, mask=mask) | |
total_loss += diff_loss_flow | |
train_losses["diff_loss_flow"] = diff_loss_flow | |
# diff loss ce | |
# (nq, B, T); (nq, B, T, 1024) | |
if self.cfg.train.diff_ce_loss_lambda > 0: | |
pred_indices, pred_dist = self.model.module.latent_to_code( | |
diff_out["x0_pred"], nq=code.shape[1] | |
) | |
gt_indices, _ = self.model.module.latent_to_code(x0, nq=code.shape[1]) | |
diff_loss_ce = diff_ce_loss(pred_dist, gt_indices, mask=mask) | |
total_loss += diff_loss_ce * self.cfg.train.diff_ce_loss_lambda | |
train_losses["diff_loss_ce"] = diff_loss_ce | |
self.optimizer.zero_grad() | |
# total_loss.backward() | |
self.accelerator.backward(total_loss) | |
if self.accelerator.sync_gradients: | |
self.accelerator.clip_grad_norm_( | |
filter(lambda p: p.requires_grad, self.model.parameters()), 0.5 | |
) | |
self.optimizer.step() | |
self.scheduler.step() | |
for item in train_losses: | |
train_losses[item] = train_losses[item].item() | |
if self.cfg.train.diff_ce_loss_lambda > 0: | |
pred_indices_list = pred_indices.long().detach().cpu().numpy() | |
gt_indices_list = gt_indices.long().detach().cpu().numpy() | |
mask_list = batch["mask"].detach().cpu().numpy() | |
for i in range(pred_indices_list.shape[0]): | |
pred_acc = np.sum( | |
(pred_indices_list[i] == gt_indices_list[i]) * mask_list | |
) / np.sum(mask_list) | |
train_losses["pred_acc_{}".format(str(i))] = pred_acc | |
train_losses["batch_size"] = code.shape[0] | |
train_losses["max_frame_nums"] = np.max( | |
batch["frame_nums"].detach().cpu().numpy() | |
) | |
return (total_loss.item(), train_losses, train_stats) | |
def _valid_step(self, batch): | |
valid_losses = {} | |
total_loss = 0 | |
valid_stats = {} | |
code = batch["code"] # (B, 16, T) | |
pitch = batch["pitch"] # (B, T) | |
duration = batch["duration"] # (B, N) | |
phone_id = batch["phone_id"] # (B, N) | |
ref_code = batch["ref_code"] # (B, 16, T') | |
phone_mask = batch["phone_mask"] # (B, N) | |
mask = batch["mask"] # (B, T) | |
ref_mask = batch["ref_mask"] # (B, T') | |
diff_out, prior_out = self.model( | |
code=code, | |
pitch=pitch, | |
duration=duration, | |
phone_id=phone_id, | |
ref_code=ref_code, | |
phone_mask=phone_mask, | |
mask=mask, | |
ref_mask=ref_mask, | |
) | |
# pitch loss | |
pitch_loss = log_pitch_loss(prior_out["pitch_pred_log"], pitch, mask=mask) | |
total_loss += pitch_loss | |
valid_losses["pitch_loss"] = pitch_loss | |
# duration loss | |
dur_loss = log_dur_loss(prior_out["dur_pred_log"], duration, mask=phone_mask) | |
total_loss += dur_loss | |
valid_losses["dur_loss"] = dur_loss | |
x0 = self.model.module.code_to_latent(code) | |
if self.cfg.model.diffusion.diffusion_type == "diffusion": | |
# diff loss x0 | |
diff_loss_x0 = diff_loss(diff_out["x0_pred"], x0, mask=mask) | |
total_loss += diff_loss_x0 | |
valid_losses["diff_loss_x0"] = diff_loss_x0 | |
# diff loss noise | |
diff_loss_noise = diff_loss( | |
diff_out["noise_pred"], diff_out["noise"], mask=mask | |
) | |
total_loss += diff_loss_noise * self.cfg.train.diff_noise_loss_lambda | |
valid_losses["diff_loss_noise"] = diff_loss_noise | |
elif self.cfg.model.diffusion.diffusion_type == "flow": | |
# diff flow matching loss | |
flow_gt = diff_out["noise"] - x0 | |
diff_loss_flow = diff_loss(diff_out["flow_pred"], flow_gt, mask=mask) | |
total_loss += diff_loss_flow | |
valid_losses["diff_loss_flow"] = diff_loss_flow | |
# diff loss ce | |
# (nq, B, T); (nq, B, T, 1024) | |
if self.cfg.train.diff_ce_loss_lambda > 0: | |
pred_indices, pred_dist = self.model.module.latent_to_code( | |
diff_out["x0_pred"], nq=code.shape[1] | |
) | |
gt_indices, _ = self.model.module.latent_to_code(x0, nq=code.shape[1]) | |
diff_loss_ce = diff_ce_loss(pred_dist, gt_indices, mask=mask) | |
total_loss += diff_loss_ce * self.cfg.train.diff_ce_loss_lambda | |
valid_losses["diff_loss_ce"] = diff_loss_ce | |
for item in valid_losses: | |
valid_losses[item] = valid_losses[item].item() | |
if self.cfg.train.diff_ce_loss_lambda > 0: | |
pred_indices_list = pred_indices.long().detach().cpu().numpy() | |
gt_indices_list = gt_indices.long().detach().cpu().numpy() | |
mask_list = batch["mask"].detach().cpu().numpy() | |
for i in range(pred_indices_list.shape[0]): | |
pred_acc = np.sum( | |
(pred_indices_list[i] == gt_indices_list[i]) * mask_list | |
) / np.sum(mask_list) | |
valid_losses["pred_acc_{}".format(str(i))] = pred_acc | |
return (total_loss.item(), valid_losses, valid_stats) | |
def _valid_epoch(self): | |
r"""Testing epoch. Should return average loss of a batch (sample) over | |
one epoch. See ``train_loop`` for usage. | |
""" | |
if isinstance(self.model, dict): | |
for key in self.model.keys(): | |
self.model[key].eval() | |
else: | |
self.model.eval() | |
epoch_sum_loss = 0.0 | |
epoch_losses = dict() | |
for batch in self.valid_dataloader: | |
# Put the data to cuda device | |
device = self.accelerator.device | |
for k, v in batch.items(): | |
if isinstance(v, torch.Tensor): | |
batch[k] = v.to(device) | |
total_loss, valid_losses, valid_stats = self._valid_step(batch) | |
epoch_sum_loss = total_loss | |
for key, value in valid_losses.items(): | |
epoch_losses[key] = value | |
self.accelerator.wait_for_everyone() | |
return epoch_sum_loss, epoch_losses | |
def _train_epoch(self): | |
r"""Training epoch. Should return average loss of a batch (sample) over | |
one epoch. See ``train_loop`` for usage. | |
""" | |
if isinstance(self.model, dict): | |
for key in self.model.keys(): | |
self.model[key].train() | |
else: | |
self.model.train() | |
epoch_sum_loss: float = 0.0 | |
epoch_losses: dict = {} | |
epoch_step: int = 0 | |
for batch in self.train_dataloader: | |
# Put the data to cuda device | |
device = self.accelerator.device | |
for k, v in batch.items(): | |
if isinstance(v, torch.Tensor): | |
batch[k] = v.to(device) | |
# Do training step and BP | |
with self.accelerator.accumulate(self.model): | |
total_loss, train_losses, training_stats = self._train_step(batch) | |
self.batch_count += 1 | |
# Update info for each step | |
# TODO: step means BP counts or batch counts? | |
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0: | |
epoch_sum_loss = total_loss | |
for key, value in train_losses.items(): | |
epoch_losses[key] = value | |
if isinstance(train_losses, dict): | |
for key, loss in train_losses.items(): | |
self.accelerator.log( | |
{"Epoch/Train {} Loss".format(key): loss}, | |
step=self.step, | |
) | |
if ( | |
self.accelerator.is_main_process | |
and self.batch_count | |
% (1 * self.cfg.train.gradient_accumulation_step) | |
== 0 | |
): | |
self.echo_log(train_losses, mode="Training") | |
self.step += 1 | |
epoch_step += 1 | |
self.accelerator.wait_for_everyone() | |
return epoch_sum_loss, epoch_losses | |
def train_loop(self): | |
r"""Training loop. The public entry of training process.""" | |
# Wait everyone to prepare before we move on | |
self.accelerator.wait_for_everyone() | |
# dump config file | |
if self.accelerator.is_main_process: | |
self._dump_cfg(self.config_save_path) | |
# self.optimizer.zero_grad() | |
# Wait to ensure good to go | |
self.accelerator.wait_for_everyone() | |
while self.epoch < self.max_epoch: | |
if self.accelerator.is_main_process: | |
self.logger.info("\n") | |
self.logger.info("-" * 32) | |
self.logger.info("Epoch {}: ".format(self.epoch)) | |
# Do training & validating epoch | |
train_total_loss, train_losses = self._train_epoch() | |
if isinstance(train_losses, dict): | |
for key, loss in train_losses.items(): | |
if self.accelerator.is_main_process: | |
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss)) | |
self.accelerator.log( | |
{"Epoch/Train {} Loss".format(key): loss}, | |
step=self.epoch, | |
) | |
valid_total_loss, valid_losses = self._valid_epoch() | |
if isinstance(valid_losses, dict): | |
for key, loss in valid_losses.items(): | |
if self.accelerator.is_main_process: | |
self.logger.info(" |- Valid/{} Loss: {:.6f}".format(key, loss)) | |
self.accelerator.log( | |
{"Epoch/Train {} Loss".format(key): loss}, | |
step=self.epoch, | |
) | |
if self.accelerator.is_main_process: | |
self.logger.info(" |- Train/Loss: {:.6f}".format(train_total_loss)) | |
self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_total_loss)) | |
self.accelerator.log( | |
{ | |
"Epoch/Train Loss": train_total_loss, | |
"Epoch/Valid Loss": valid_total_loss, | |
}, | |
step=self.epoch, | |
) | |
self.accelerator.wait_for_everyone() | |
if isinstance(self.scheduler, dict): | |
for key in self.scheduler.keys(): | |
self.scheduler[key].step() | |
else: | |
self.scheduler.step() | |
# Check if hit save_checkpoint_stride and run_eval | |
run_eval = False | |
if self.accelerator.is_main_process: | |
save_checkpoint = False | |
hit_dix = [] | |
for i, num in enumerate(self.save_checkpoint_stride): | |
if self.epoch % num == 0: | |
save_checkpoint = True | |
hit_dix.append(i) | |
run_eval |= self.run_eval[i] | |
self.accelerator.wait_for_everyone() | |
if self.accelerator.is_main_process and save_checkpoint: | |
path = os.path.join( | |
self.checkpoint_dir, | |
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
self.epoch, self.step, train_total_loss | |
), | |
) | |
print("save state......") | |
self.accelerator.save_state(path) | |
print("finish saving state......") | |
json.dump( | |
self.checkpoints_path, | |
open(os.path.join(path, "ckpts.json"), "w"), | |
ensure_ascii=False, | |
indent=4, | |
) | |
# Remove old checkpoints | |
to_remove = [] | |
for idx in hit_dix: | |
self.checkpoints_path[idx].append(path) | |
while len(self.checkpoints_path[idx]) > self.keep_last[idx]: | |
to_remove.append((idx, self.checkpoints_path[idx].pop(0))) | |
# Search conflicts | |
total = set() | |
for i in self.checkpoints_path: | |
total |= set(i) | |
do_remove = set() | |
for idx, path in to_remove[::-1]: | |
if path in total: | |
self.checkpoints_path[idx].insert(0, path) | |
else: | |
do_remove.add(path) | |
# Remove old checkpoints | |
for path in do_remove: | |
shutil.rmtree(path, ignore_errors=True) | |
if self.accelerator.is_main_process: | |
self.logger.debug(f"Remove old checkpoint: {path}") | |
self.accelerator.wait_for_everyone() | |
if run_eval: | |
# TODO: run evaluation | |
pass | |
# Update info for each epoch | |
self.epoch += 1 | |
# Finish training and save final checkpoint | |
self.accelerator.wait_for_everyone() | |
if self.accelerator.is_main_process: | |
self.accelerator.save_state( | |
os.path.join( | |
self.checkpoint_dir, | |
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
self.epoch, self.step, valid_total_loss | |
), | |
) | |
) | |
self.accelerator.end_training() | |