maskgct / modules /general /input_strategies.py
Hecheng0625's picture
Upload 409 files
c968fc3 verified
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# This code is modified from
# https://github.com/lifeiteng/vall-e/blob/9c69096d603ce13174fb5cb025f185e2e9b36ac7/valle/data/input_strategies.py
import random
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from typing import Tuple, Type
from lhotse import CutSet
from lhotse.dataset.collation import collate_features
from lhotse.dataset.input_strategies import (
ExecutorType,
PrecomputedFeatures,
_get_executor,
)
from lhotse.utils import fastcopy
class PromptedFeatures:
def __init__(self, prompts, features):
self.prompts = prompts
self.features = features
def to(self, device):
return PromptedFeatures(self.prompts.to(device), self.features.to(device))
def sum(self):
return self.features.sum()
@property
def ndim(self):
return self.features.ndim
@property
def data(self):
return (self.prompts, self.features)
class PromptedPrecomputedFeatures(PrecomputedFeatures):
def __init__(
self,
dataset: str,
cuts: CutSet,
num_workers: int = 0,
executor_type: Type[ExecutorType] = ThreadPoolExecutor,
) -> None:
super().__init__(num_workers, executor_type)
self.utt2neighbors = self._create_utt2neighbors(dataset, cuts)
def __call__(self, cuts: CutSet) -> Tuple[PromptedFeatures, PromptedFeatures]:
features, features_lens = self._collate_features(cuts)
prompts, prompts_lens = self._collate_prompts(cuts)
return PromptedFeatures(prompts, features), PromptedFeatures(
prompts_lens, features_lens
)
def _create_utt2neighbors(self, dataset, cuts):
utt2neighbors = defaultdict(lambda: [])
utt2cut = {cut.id: cut for cut in cuts}
if dataset.lower() == "libritts":
self._process_libritts_dataset(utt2neighbors, utt2cut, cuts)
elif dataset.lower() == "ljspeech":
self._process_ljspeech_dataset(utt2neighbors, utt2cut, cuts)
else:
raise ValueError("Unsupported dataset")
return utt2neighbors
def _process_libritts_dataset(self, utt2neighbors, utt2cut, cuts):
speaker2utts = defaultdict(lambda: [])
for cut in cuts:
speaker = cut.supervisions[0].speaker
speaker2utts[speaker].append(cut.id)
for spk, uttids in speaker2utts.items():
sorted_uttids = sorted(uttids)
if len(sorted_uttids) == 1:
utt2neighbors[sorted_uttids[0]].append(utt2cut[sorted_uttids[0]])
continue
utt2prevutt = dict(
zip(sorted_uttids, [sorted_uttids[1]] + sorted_uttids[:-1])
)
utt2postutt = dict(zip(sorted_uttids[:-1], sorted_uttids[1:]))
for utt in sorted_uttids:
if utt in utt2prevutt:
utt2neighbors[utt].append(utt2cut[utt2prevutt[utt]])
if utt in utt2postutt:
utt2neighbors[utt].append(utt2cut[utt2postutt[utt]])
def _process_ljspeech_dataset(self, utt2neighbors, utt2cut, cuts):
uttids = [cut.id for cut in cuts]
if len(uttids) == 1:
utt2neighbors[uttids[0]].append(utt2cut[uttids[0]])
return
utt2prevutt = dict(zip(uttids, [uttids[1]] + uttids[:-1]))
utt2postutt = dict(zip(uttids[:-1], uttids[1:]))
for utt in uttids:
prevutt, postutt = utt2prevutt.get(utt), utt2postutt.get(utt)
if prevutt and utt[:5] == prevutt[:5]:
utt2neighbors[utt].append(utt2cut[prevutt])
if postutt and utt[:5] == postutt[:5]:
utt2neighbors[utt].append(utt2cut[postutt])
def _collate_features(self, cuts):
return collate_features(
cuts,
executor=_get_executor(self.num_workers, executor_type=self._executor_type),
)
def _collate_prompts(self, cuts):
prompts_cuts = []
for k, cut in enumerate(cuts):
prompts_cut = random.choice(self.utt2neighbors[cut.id])
prompts_cuts.append(fastcopy(prompts_cut, id=f"{cut.id}-{str(k)}"))
mini_duration = min([cut.duration for cut in prompts_cuts] + [3.0])
prompts_cuts = CutSet(
cuts={k: cut for k, cut in enumerate(prompts_cuts)}
).truncate(max_duration=mini_duration, offset_type="random", preserve_id=False)
return collate_features(
prompts_cuts,
executor=_get_executor(self.num_workers, executor_type=self._executor_type),
)