# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv1d, AvgPool1d from torch.nn.utils import weight_norm, spectral_norm from torch import nn from modules.vocoder_blocks import * LRELU_SLOPE = 0.1 class DiscriminatorS(nn.Module): def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList( [ norm_f(Conv1d(1, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ] ) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(nn.Module): def __init__(self, cfg): super(MultiScaleDiscriminator, self).__init__() self.cfg = cfg self.discriminators = nn.ModuleList( [ DiscriminatorS(use_spectral_norm=True), DiscriminatorS(), DiscriminatorS(), ] ) self.meanpools = nn.ModuleList( [AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)] ) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if i != 0: y = self.meanpools[i - 1](y) y_hat = self.meanpools[i - 1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class MultiScaleDiscriminator_JETS(nn.Module): def __init__(self): super(MultiScaleDiscriminator_JETS, self).__init__() self.discriminators = nn.ModuleList( [ DiscriminatorS(use_spectral_norm=True), DiscriminatorS(), DiscriminatorS(), ] ) self.meanpools = nn.ModuleList( [AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)] ) def forward(self, y): y_d_rs = [] # p, y, groud-truth fmap_rs = [] for i, d in enumerate(self.discriminators): if i != 0: y = self.meanpools[i - 1](y) y_d_r, fmap_r = d(y) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) return y_d_rs, fmap_rs # fmap_rs is real, fmap_gs is generated.