# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import librosa import numpy as np from torchmetrics.audio.stoi import ShortTimeObjectiveIntelligibility def extract_stoi(audio_ref, audio_deg, **kwargs): """Compute Short-Time Objective Intelligibility between the predicted and the ground truth audio. audio_ref: path to the ground truth audio. audio_deg: path to the predicted audio. fs: sampling rate. method: "dtw" will use dtw algorithm to align the length of the ground truth and predicted audio. "cut" will cut both audios into a same length according to the one with the shorter length. """ # Load hyperparameters kwargs = kwargs["kwargs"] fs = kwargs["fs"] method = kwargs["method"] # Load audio if fs != None: audio_ref, _ = librosa.load(audio_ref, sr=fs) audio_deg, _ = librosa.load(audio_deg, sr=fs) else: audio_ref, fs = librosa.load(audio_ref) audio_deg, fs = librosa.load(audio_deg) # Initialize method stoi = ShortTimeObjectiveIntelligibility(fs, extended=False) # Audio length alignment if len(audio_ref) != len(audio_deg): if method == "cut": length = min(len(audio_ref), len(audio_deg)) audio_ref = audio_ref[:length] audio_deg = audio_deg[:length] elif method == "dtw": _, wp = librosa.sequence.dtw(audio_ref, audio_deg, backtrack=True) audio_ref_new = [] audio_deg_new = [] for i in range(wp.shape[0]): ref_index = wp[i][0] deg_index = wp[i][1] audio_ref_new.append(audio_ref[ref_index]) audio_deg_new.append(audio_deg[deg_index]) audio_ref = np.array(audio_ref_new) audio_deg = np.array(audio_deg_new) assert len(audio_ref) == len(audio_deg) # Convert to tensor audio_ref = torch.from_numpy(audio_ref) audio_deg = torch.from_numpy(audio_deg) if torch.cuda.is_available(): device = torch.device("cuda") audio_ref = audio_ref.to(device) audio_deg = audio_deg.to(device) stoi = stoi.to(device) return stoi(audio_deg, audio_ref).detach().cpu().numpy().tolist()