# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os, sys import os.path as osp import numpy as np import torch from torch import nn from torch.optim import Optimizer from functools import reduce from torch.optim import AdamW class MultiOptimizer: def __init__(self, optimizers={}, schedulers={}): self.optimizers = optimizers self.schedulers = schedulers self.keys = list(optimizers.keys()) self.param_groups = reduce( lambda x, y: x + y, [v.param_groups for v in self.optimizers.values()] ) def state_dict(self): state_dicts = [(key, self.optimizers[key].state_dict()) for key in self.keys] return state_dicts def scheduler_state_dict(self): state_dicts = [(key, self.schedulers[key].state_dict()) for key in self.keys] return state_dicts def load_state_dict(self, state_dict): for key, val in state_dict: try: self.optimizers[key].load_state_dict(val) except: print("Unloaded %s" % key) def load_scheduler_state_dict(self, state_dict): for key, val in state_dict: try: self.schedulers[key].load_state_dict(val) except: print("Unloaded %s" % key) def step(self, key=None, scaler=None): keys = [key] if key is not None else self.keys _ = [self._step(key, scaler) for key in keys] def _step(self, key, scaler=None): if scaler is not None: scaler.step(self.optimizers[key]) scaler.update() else: self.optimizers[key].step() def zero_grad(self, key=None): if key is not None: self.optimizers[key].zero_grad() else: _ = [self.optimizers[key].zero_grad() for key in self.keys] def scheduler(self, *args, key=None): if key is not None: self.schedulers[key].step(*args) else: _ = [self.schedulers[key].step_batch(*args) for key in self.keys] def define_scheduler(optimizer, params): scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=params["gamma"]) return scheduler def build_optimizer(model_dict, scheduler_params_dict, lr, type="AdamW"): optim = {} for key, model in model_dict.items(): model_parameters = model.parameters() parameters_names = [] parameters_names.append( [name_param_pair[0] for name_param_pair in model.named_parameters()] ) if type == "AdamW": optim[key] = AdamW( model_parameters, lr=lr, betas=(0.9, 0.98), eps=1e-9, weight_decay=0.1, ) else: raise ValueError("Unknown optimizer type: %s" % type) schedulers = dict( [ (key, torch.optim.lr_scheduler.ExponentialLR(opt, gamma=0.999996)) for key, opt in optim.items() ] ) multi_optim = MultiOptimizer(optim, schedulers) return multi_optim