# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn import math from torch.nn import functional as F class StyleAdaptiveLayerNorm(nn.Module): def __init__(self, normalized_shape, eps=1e-5): super().__init__() self.in_dim = normalized_shape self.norm = nn.LayerNorm(self.in_dim, eps=eps, elementwise_affine=False) self.style = nn.Linear(self.in_dim, self.in_dim * 2) self.style.bias.data[: self.in_dim] = 1 self.style.bias.data[self.in_dim :] = 0 def forward(self, x, condition): # x: (B, T, d); condition: (B, T, d) style = self.style(torch.mean(condition, dim=1, keepdim=True)) gamma, beta = style.chunk(2, -1) out = self.norm(x) out = gamma * out + beta return out class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout, max_len=5000): super().__init__() self.dropout = dropout position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) ) pe = torch.zeros(max_len, 1, d_model) pe[:, 0, 0::2] = torch.sin(position * div_term) pe[:, 0, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) def forward(self, x): x = x + self.pe[: x.size(0)] return F.dropout(x, self.dropout, training=self.training) class TransformerFFNLayer(nn.Module): def __init__( self, encoder_hidden, conv_filter_size, conv_kernel_size, encoder_dropout ): super().__init__() self.encoder_hidden = encoder_hidden self.conv_filter_size = conv_filter_size self.conv_kernel_size = conv_kernel_size self.encoder_dropout = encoder_dropout self.ffn_1 = nn.Conv1d( self.encoder_hidden, self.conv_filter_size, self.conv_kernel_size, padding=self.conv_kernel_size // 2, ) self.ffn_1.weight.data.normal_(0.0, 0.02) self.ffn_2 = nn.Linear(self.conv_filter_size, self.encoder_hidden) self.ffn_2.weight.data.normal_(0.0, 0.02) def forward(self, x): # x: (B, T, d) x = self.ffn_1(x.permute(0, 2, 1)).permute( 0, 2, 1 ) # (B, T, d) -> (B, d, T) -> (B, T, d) x = F.relu(x) x = F.dropout(x, self.encoder_dropout, training=self.training) x = self.ffn_2(x) return x class TransformerEncoderLayer(nn.Module): def __init__( self, encoder_hidden, encoder_head, conv_filter_size, conv_kernel_size, encoder_dropout, use_cln, ): super().__init__() self.encoder_hidden = encoder_hidden self.encoder_head = encoder_head self.conv_filter_size = conv_filter_size self.conv_kernel_size = conv_kernel_size self.encoder_dropout = encoder_dropout self.use_cln = use_cln if not self.use_cln: self.ln_1 = nn.LayerNorm(self.encoder_hidden) self.ln_2 = nn.LayerNorm(self.encoder_hidden) else: self.ln_1 = StyleAdaptiveLayerNorm(self.encoder_hidden) self.ln_2 = StyleAdaptiveLayerNorm(self.encoder_hidden) self.self_attn = nn.MultiheadAttention( self.encoder_hidden, self.encoder_head, batch_first=True ) self.ffn = TransformerFFNLayer( self.encoder_hidden, self.conv_filter_size, self.conv_kernel_size, self.encoder_dropout, ) def forward(self, x, key_padding_mask, conditon=None): # x: (B, T, d); key_padding_mask: (B, T), mask is 0; condition: (B, T, d) # self attention residual = x if self.use_cln: x = self.ln_1(x, conditon) else: x = self.ln_1(x) if key_padding_mask != None: key_padding_mask_input = ~(key_padding_mask.bool()) else: key_padding_mask_input = None x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=key_padding_mask_input ) x = F.dropout(x, self.encoder_dropout, training=self.training) x = residual + x # ffn residual = x if self.use_cln: x = self.ln_2(x, conditon) else: x = self.ln_2(x) x = self.ffn(x) x = residual + x return x class TransformerEncoder(nn.Module): def __init__( self, enc_emb_tokens=None, encoder_layer=4, encoder_hidden=256, encoder_head=4, conv_filter_size=1024, conv_kernel_size=5, encoder_dropout=0.1, use_cln=False, cfg=None, ): super().__init__() self.encoder_layer = ( encoder_layer if encoder_layer is not None else cfg.encoder_layer ) self.encoder_hidden = ( encoder_hidden if encoder_hidden is not None else cfg.encoder_hidden ) self.encoder_head = ( encoder_head if encoder_head is not None else cfg.encoder_head ) self.conv_filter_size = ( conv_filter_size if conv_filter_size is not None else cfg.conv_filter_size ) self.conv_kernel_size = ( conv_kernel_size if conv_kernel_size is not None else cfg.conv_kernel_size ) self.encoder_dropout = ( encoder_dropout if encoder_dropout is not None else cfg.encoder_dropout ) self.use_cln = use_cln if use_cln is not None else cfg.use_cln if enc_emb_tokens != None: self.use_enc_emb = True self.enc_emb_tokens = enc_emb_tokens else: self.use_enc_emb = False self.position_emb = PositionalEncoding( self.encoder_hidden, self.encoder_dropout ) self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerEncoderLayer( self.encoder_hidden, self.encoder_head, self.conv_filter_size, self.conv_kernel_size, self.encoder_dropout, self.use_cln, ) for i in range(self.encoder_layer) ] ) if self.use_cln: self.last_ln = StyleAdaptiveLayerNorm(self.encoder_hidden) else: self.last_ln = nn.LayerNorm(self.encoder_hidden) def forward(self, x, key_padding_mask, condition=None): if len(x.shape) == 2 and self.use_enc_emb: x = self.enc_emb_tokens(x) x = self.position_emb(x) else: x = self.position_emb(x) # (B, T, d) for layer in self.layers: x = layer(x, key_padding_mask, condition) if self.use_cln: x = self.last_ln(x, condition) else: x = self.last_ln(x) return x