# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import torch from models.svc.diffusion.diffusion_trainer import DiffusionTrainer from models.svc.comosvc.comosvc_trainer import ComoSVCTrainer from models.svc.transformer.transformer_trainer import TransformerTrainer from models.svc.vits.vits_trainer import VitsSVCTrainer from utils.util import load_config def build_trainer(args, cfg): supported_trainer = { "DiffWaveNetSVC": DiffusionTrainer, "DiffComoSVC": ComoSVCTrainer, "TransformerSVC": TransformerTrainer, "VitsSVC": VitsSVCTrainer, } trainer_class = supported_trainer[cfg.model_type] trainer = trainer_class(args, cfg) return trainer def cuda_relevant(deterministic=False): torch.cuda.empty_cache() # TF32 on Ampere and above torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.enabled = True torch.backends.cudnn.allow_tf32 = True # Deterministic torch.backends.cudnn.deterministic = deterministic torch.backends.cudnn.benchmark = not deterministic torch.use_deterministic_algorithms(deterministic) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--config", default="config.json", help="json files for configurations.", required=True, ) parser.add_argument( "--exp_name", type=str, default="exp_name", help="A specific name to note the experiment", required=True, ) parser.add_argument( "--resume", action="store_true", help="If specified, to resume from the existing checkpoint.", ) parser.add_argument( "--resume_from_ckpt_path", type=str, default="", help="The specific checkpoint path that you want to resume from.", ) parser.add_argument( "--resume_type", type=str, default="", help="`resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights", ) parser.add_argument( "--log_level", default="warning", help="logging level (debug, info, warning)" ) args = parser.parse_args() cfg = load_config(args.config) # Data Augmentation if ( type(cfg.preprocess.data_augment) == list and len(cfg.preprocess.data_augment) > 0 ): new_datasets_list = [] for dataset in cfg.preprocess.data_augment: new_datasets = [ f"{dataset}_pitch_shift" if cfg.preprocess.use_pitch_shift else None, ( f"{dataset}_formant_shift" if cfg.preprocess.use_formant_shift else None ), f"{dataset}_equalizer" if cfg.preprocess.use_equalizer else None, f"{dataset}_time_stretch" if cfg.preprocess.use_time_stretch else None, ] new_datasets_list.extend(filter(None, new_datasets)) cfg.dataset.extend(new_datasets_list) # CUDA settings cuda_relevant() # Build trainer trainer = build_trainer(args, cfg) trainer.train_loop() if __name__ == "__main__": main()