# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This code is modified from https://github.com/ming024/FastSpeech2/blob/master/model/fastspeech2.py import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from modules.transformer.Models import Encoder, Decoder from modules.transformer.Layers import PostNet from collections import OrderedDict import os import json def get_mask_from_lengths(lengths, max_len=None): device = lengths.device batch_size = lengths.shape[0] if max_len is None: max_len = torch.max(lengths).item() ids = torch.arange(0, max_len).unsqueeze(0).expand(batch_size, -1).to(device) mask = ids >= lengths.unsqueeze(1).expand(-1, max_len) return mask def pad(input_ele, mel_max_length=None): if mel_max_length: max_len = mel_max_length else: max_len = max([input_ele[i].size(0) for i in range(len(input_ele))]) out_list = list() for i, batch in enumerate(input_ele): if len(batch.shape) == 1: one_batch_padded = F.pad( batch, (0, max_len - batch.size(0)), "constant", 0.0 ) elif len(batch.shape) == 2: one_batch_padded = F.pad( batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0 ) out_list.append(one_batch_padded) out_padded = torch.stack(out_list) return out_padded class VarianceAdaptor(nn.Module): """Variance Adaptor""" def __init__(self, cfg): super(VarianceAdaptor, self).__init__() self.duration_predictor = VariancePredictor(cfg) self.length_regulator = LengthRegulator() self.pitch_predictor = VariancePredictor(cfg) self.energy_predictor = VariancePredictor(cfg) # assign the pitch/energy feature level if cfg.preprocess.use_frame_pitch: self.pitch_feature_level = "frame_level" self.pitch_dir = cfg.preprocess.pitch_dir else: self.pitch_feature_level = "phoneme_level" self.pitch_dir = cfg.preprocess.phone_pitch_dir if cfg.preprocess.use_frame_energy: self.energy_feature_level = "frame_level" self.energy_dir = cfg.preprocess.energy_dir else: self.energy_feature_level = "phoneme_level" self.energy_dir = cfg.preprocess.phone_energy_dir assert self.pitch_feature_level in ["phoneme_level", "frame_level"] assert self.energy_feature_level in ["phoneme_level", "frame_level"] pitch_quantization = cfg.model.variance_embedding.pitch_quantization energy_quantization = cfg.model.variance_embedding.energy_quantization n_bins = cfg.model.variance_embedding.n_bins assert pitch_quantization in ["linear", "log"] assert energy_quantization in ["linear", "log"] with open( os.path.join( cfg.preprocess.processed_dir, cfg.dataset[0], self.energy_dir, "statistics.json", ) ) as f: stats = json.load(f) stats = stats[cfg.dataset[0] + "_" + cfg.dataset[0]] mean, std = ( stats["voiced_positions"]["mean"], stats["voiced_positions"]["std"], ) energy_min = (stats["total_positions"]["min"] - mean) / std energy_max = (stats["total_positions"]["max"] - mean) / std with open( os.path.join( cfg.preprocess.processed_dir, cfg.dataset[0], self.pitch_dir, "statistics.json", ) ) as f: stats = json.load(f) stats = stats[cfg.dataset[0] + "_" + cfg.dataset[0]] mean, std = ( stats["voiced_positions"]["mean"], stats["voiced_positions"]["std"], ) pitch_min = (stats["total_positions"]["min"] - mean) / std pitch_max = (stats["total_positions"]["max"] - mean) / std if pitch_quantization == "log": self.pitch_bins = nn.Parameter( torch.exp( torch.linspace(np.log(pitch_min), np.log(pitch_max), n_bins - 1) ), requires_grad=False, ) else: self.pitch_bins = nn.Parameter( torch.linspace(pitch_min, pitch_max, n_bins - 1), requires_grad=False, ) if energy_quantization == "log": self.energy_bins = nn.Parameter( torch.exp( torch.linspace(np.log(energy_min), np.log(energy_max), n_bins - 1) ), requires_grad=False, ) else: self.energy_bins = nn.Parameter( torch.linspace(energy_min, energy_max, n_bins - 1), requires_grad=False, ) self.pitch_embedding = nn.Embedding( n_bins, cfg.model.transformer.encoder_hidden ) self.energy_embedding = nn.Embedding( n_bins, cfg.model.transformer.encoder_hidden ) def get_pitch_embedding(self, x, target, mask, control): prediction = self.pitch_predictor(x, mask) if target is not None: embedding = self.pitch_embedding(torch.bucketize(target, self.pitch_bins)) else: prediction = prediction * control embedding = self.pitch_embedding( torch.bucketize(prediction, self.pitch_bins) ) return prediction, embedding def get_energy_embedding(self, x, target, mask, control): prediction = self.energy_predictor(x, mask) if target is not None: embedding = self.energy_embedding(torch.bucketize(target, self.energy_bins)) else: prediction = prediction * control embedding = self.energy_embedding( torch.bucketize(prediction, self.energy_bins) ) return prediction, embedding def forward( self, x, src_mask, mel_mask=None, max_len=None, pitch_target=None, energy_target=None, duration_target=None, p_control=1.0, e_control=1.0, d_control=1.0, ): log_duration_prediction = self.duration_predictor(x, src_mask) if self.pitch_feature_level == "phoneme_level": pitch_prediction, pitch_embedding = self.get_pitch_embedding( x, pitch_target, src_mask, p_control ) x = x + pitch_embedding if self.energy_feature_level == "phoneme_level": energy_prediction, energy_embedding = self.get_energy_embedding( x, energy_target, src_mask, e_control ) x = x + energy_embedding if duration_target is not None: x, mel_len = self.length_regulator(x, duration_target, max_len) duration_rounded = duration_target else: duration_rounded = torch.clamp( (torch.round(torch.exp(log_duration_prediction) - 1) * d_control), min=0, ) x, mel_len = self.length_regulator(x, duration_rounded, max_len) mel_mask = get_mask_from_lengths(mel_len) if self.pitch_feature_level == "frame_level": pitch_prediction, pitch_embedding = self.get_pitch_embedding( x, pitch_target, mel_mask, p_control ) x = x + pitch_embedding if self.energy_feature_level == "frame_level": energy_prediction, energy_embedding = self.get_energy_embedding( x, energy_target, mel_mask, e_control ) x = x + energy_embedding return ( x, pitch_prediction, energy_prediction, log_duration_prediction, duration_rounded, mel_len, mel_mask, ) class LengthRegulator(nn.Module): """Length Regulator""" def __init__(self): super(LengthRegulator, self).__init__() def LR(self, x, duration, max_len): device = x.device output = list() mel_len = list() for batch, expand_target in zip(x, duration): expanded = self.expand(batch, expand_target) output.append(expanded) mel_len.append(expanded.shape[0]) if max_len is not None: output = pad(output, max_len) else: output = pad(output) return output, torch.LongTensor(mel_len).to(device) def expand(self, batch, predicted): out = list() for i, vec in enumerate(batch): expand_size = predicted[i].item() out.append(vec.expand(max(int(expand_size), 0), -1)) out = torch.cat(out, 0) return out def forward(self, x, duration, max_len): output, mel_len = self.LR(x, duration, max_len) return output, mel_len class VariancePredictor(nn.Module): """Duration, Pitch and Energy Predictor""" def __init__(self, cfg): super(VariancePredictor, self).__init__() self.input_size = cfg.model.transformer.encoder_hidden self.filter_size = cfg.model.variance_predictor.filter_size self.kernel = cfg.model.variance_predictor.kernel_size self.conv_output_size = cfg.model.variance_predictor.filter_size self.dropout = cfg.model.variance_predictor.dropout self.conv_layer = nn.Sequential( OrderedDict( [ ( "conv1d_1", Conv( self.input_size, self.filter_size, kernel_size=self.kernel, padding=(self.kernel - 1) // 2, ), ), ("relu_1", nn.ReLU()), ("layer_norm_1", nn.LayerNorm(self.filter_size)), ("dropout_1", nn.Dropout(self.dropout)), ( "conv1d_2", Conv( self.filter_size, self.filter_size, kernel_size=self.kernel, padding=1, ), ), ("relu_2", nn.ReLU()), ("layer_norm_2", nn.LayerNorm(self.filter_size)), ("dropout_2", nn.Dropout(self.dropout)), ] ) ) self.linear_layer = nn.Linear(self.conv_output_size, 1) def forward(self, encoder_output, mask): out = self.conv_layer(encoder_output) out = self.linear_layer(out) out = out.squeeze(-1) if mask is not None: out = out.masked_fill(mask, 0.0) return out class Conv(nn.Module): """ Convolution Module """ def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, w_init="linear", ): """ :param in_channels: dimension of input :param out_channels: dimension of output :param kernel_size: size of kernel :param stride: size of stride :param padding: size of padding :param dilation: dilation rate :param bias: boolean. if True, bias is included. :param w_init: str. weight inits with xavier initialization. """ super(Conv, self).__init__() self.conv = nn.Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, ) def forward(self, x): x = x.contiguous().transpose(1, 2) x = self.conv(x) x = x.contiguous().transpose(1, 2) return x class FastSpeech2(nn.Module): def __init__(self, cfg) -> None: super(FastSpeech2, self).__init__() self.cfg = cfg self.encoder = Encoder(cfg.model) self.variance_adaptor = VarianceAdaptor(cfg) self.decoder = Decoder(cfg.model) self.mel_linear = nn.Linear( cfg.model.transformer.decoder_hidden, cfg.preprocess.n_mel, ) self.postnet = PostNet(n_mel_channels=cfg.preprocess.n_mel) self.speaker_emb = None if cfg.train.multi_speaker_training: with open( os.path.join( cfg.preprocess.processed_dir, cfg.dataset[0], "spk2id.json" ), "r", ) as f: n_speaker = len(json.load(f)) self.speaker_emb = nn.Embedding( n_speaker, cfg.model.transformer.encoder_hidden, ) def forward(self, data, p_control=1.0, e_control=1.0, d_control=1.0): speakers = data["spk_id"] texts = data["texts"] src_lens = data["text_len"] max_src_len = max(src_lens) mel_lens = data["target_len"] if "target_len" in data else None max_mel_len = max(mel_lens) if "target_len" in data else None p_targets = data["pitch"] if "pitch" in data else None e_targets = data["energy"] if "energy" in data else None d_targets = data["durations"] if "durations" in data else None src_masks = get_mask_from_lengths(src_lens, max_src_len) mel_masks = ( get_mask_from_lengths(mel_lens, max_mel_len) if mel_lens is not None else None ) output = self.encoder(texts, src_masks) if self.speaker_emb is not None: output = output + self.speaker_emb(speakers).unsqueeze(1).expand( -1, max_src_len, -1 ) ( output, p_predictions, e_predictions, log_d_predictions, d_rounded, mel_lens, mel_masks, ) = self.variance_adaptor( output, src_masks, mel_masks, max_mel_len, p_targets, e_targets, d_targets, p_control, e_control, d_control, ) output, mel_masks = self.decoder(output, mel_masks) output = self.mel_linear(output) postnet_output = self.postnet(output) + output return { "output": output, "postnet_output": postnet_output, "p_predictions": p_predictions, "e_predictions": e_predictions, "log_d_predictions": log_d_predictions, "d_rounded": d_rounded, "src_masks": src_masks, "mel_masks": mel_masks, "src_lens": src_lens, "mel_lens": mel_lens, } class FastSpeech2Loss(nn.Module): """FastSpeech2 Loss""" def __init__(self, cfg): super(FastSpeech2Loss, self).__init__() if cfg.preprocess.use_frame_pitch: self.pitch_feature_level = "frame_level" else: self.pitch_feature_level = "phoneme_level" if cfg.preprocess.use_frame_energy: self.energy_feature_level = "frame_level" else: self.energy_feature_level = "phoneme_level" self.mse_loss = nn.MSELoss() self.mae_loss = nn.L1Loss() def forward(self, data, predictions): mel_targets = data["mel"] pitch_targets = data["pitch"].float() energy_targets = data["energy"].float() duration_targets = data["durations"] mel_predictions = predictions["output"] postnet_mel_predictions = predictions["postnet_output"] pitch_predictions = predictions["p_predictions"] energy_predictions = predictions["e_predictions"] log_duration_predictions = predictions["log_d_predictions"] src_masks = predictions["src_masks"] mel_masks = predictions["mel_masks"] src_masks = ~src_masks mel_masks = ~mel_masks log_duration_targets = torch.log(duration_targets.float() + 1) mel_targets = mel_targets[:, : mel_masks.shape[1], :] mel_masks = mel_masks[:, : mel_masks.shape[1]] log_duration_targets.requires_grad = False pitch_targets.requires_grad = False energy_targets.requires_grad = False mel_targets.requires_grad = False if self.pitch_feature_level == "phoneme_level": pitch_predictions = pitch_predictions.masked_select(src_masks) pitch_targets = pitch_targets.masked_select(src_masks) elif self.pitch_feature_level == "frame_level": pitch_predictions = pitch_predictions.masked_select(mel_masks) pitch_targets = pitch_targets.masked_select(mel_masks) if self.energy_feature_level == "phoneme_level": energy_predictions = energy_predictions.masked_select(src_masks) energy_targets = energy_targets.masked_select(src_masks) if self.energy_feature_level == "frame_level": energy_predictions = energy_predictions.masked_select(mel_masks) energy_targets = energy_targets.masked_select(mel_masks) log_duration_predictions = log_duration_predictions.masked_select(src_masks) log_duration_targets = log_duration_targets.masked_select(src_masks) mel_predictions = mel_predictions.masked_select(mel_masks.unsqueeze(-1)) postnet_mel_predictions = postnet_mel_predictions.masked_select( mel_masks.unsqueeze(-1) ) mel_targets = mel_targets.masked_select(mel_masks.unsqueeze(-1)) mel_loss = self.mae_loss(mel_predictions, mel_targets) postnet_mel_loss = self.mae_loss(postnet_mel_predictions, mel_targets) pitch_loss = self.mse_loss(pitch_predictions, pitch_targets) energy_loss = self.mse_loss(energy_predictions, energy_targets) duration_loss = self.mse_loss(log_duration_predictions, log_duration_targets) total_loss = ( mel_loss + postnet_mel_loss + duration_loss + pitch_loss + energy_loss ) return { "loss": total_loss, "mel_loss": mel_loss, "postnet_mel_loss": postnet_mel_loss, "pitch_loss": pitch_loss, "energy_loss": energy_loss, "duration_loss": duration_loss, }