Spaces:
Sleeping
Sleeping
File size: 4,716 Bytes
55fe921 087797f 55fe921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import subprocess
# Install necessary packages
subprocess.run(["pip", "install", "-U", "git+https://github.com/huggingface/transformers.git"])
subprocess.run(["pip", "install", "-U", "git+https://github.com/huggingface/accelerate.git"])
subprocess.run(["pip", "install", "datasets"])
subprocess.run(["pip", "install", "evaluate"])
subprocess.run(["pip", "install", "torchvision"])
# Rest of your code
model_checkpoint = "microsoft/resnet-50"
batch_size = 128
from datasets import load_dataset
# Load the dataset from Hugging Face Hub
dataset = load_dataset("DamarJati/Face-Mask-Detection")
# Continue with the rest of your script...
labels = dataset["train"].features["label"].names
label2id, id2label = dict(), dict()
for i, label in enumerate(labels):
label2id[label] = i
id2label[i] = label
from transformers import AutoImageProcessor
image_processor = AutoImageProcessor.from_pretrained(model_checkpoint)
from torchvision.transforms import (
CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ColorJitter, RandomRotation
)
normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
if "height" in image_processor.size:
size = (image_processor.size["height"], image_processor.size["width"])
crop_size = size
max_size = None
elif "shortest_edge" in image_processor.size:
size = image_processor.size["shortest_edge"]
crop_size = (size, size)
max_size = image_processor.size.get("longest_edge")
train_transforms = Compose(
[
RandomResizedCrop(crop_size),
RandomHorizontalFlip(),
RandomRotation(degrees=15),
ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
ToTensor(),
normalize,
]
)
val_transforms = Compose(
[
Resize(size),
CenterCrop(crop_size),
RandomRotation(degrees=15),
ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
ToTensor(),
normalize,
]
)
def preprocess_train(example_batch):
example_batch["pixel_values"] = [
train_transforms(image.convert("RGB")) for image in example_batch["image"]
]
return example_batch
def preprocess_val(example_batch):
example_batch["pixel_values"] = [val_transforms(image.convert("RGB")) for image in example_batch["image"]]
return example_batch
splits = dataset["train"].train_test_split(test_size=0.3)
train_ds = splits['train']
val_ds = splits['test']
train_ds.set_transform(preprocess_train)
val_ds.set_transform(preprocess_val)
from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
model = AutoModelForImageClassification.from_pretrained(model_checkpoint,
label2id=label2id,
id2label=id2label,
ignore_mismatched_sizes = True)
model_name = model_checkpoint.split("/")[-1]
args = TrainingArguments(
f"{model_name}-finetuned",
remove_unused_columns=False,
evaluation_strategy = "epoch",
save_strategy = "epoch",
save_total_limit = 5,
learning_rate=1e-3,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=2,
per_device_eval_batch_size=batch_size,
num_train_epochs=2,
warmup_ratio=0.1,
weight_decay=0.01,
lr_scheduler_type="cosine",
logging_steps=10,
load_best_model_at_end=True,
metric_for_best_model="accuracy",)
import numpy as np
def compute_metrics(eval_pred):
"""Computes accuracy on a batch of predictions"""
predictions = np.argmax(eval_pred.predictions, axis=1)
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
import torch
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
labels = torch.tensor([example["label"] for example in examples])
return {"pixel_values": pixel_values, "labels": labels}
trainer = Trainer(model,
args,
train_dataset=train_ds,
eval_dataset=val_ds,
tokenizer=image_processor,
compute_metrics=compute_metrics,
data_collator=collate_fn,)
train_results = trainer.train()
# Save the model
trainer.save_model()
trainer.log_metrics("train", train_results.metrics)
trainer.save_metrics("train", train_results.metrics)
trainer.save_state()
metrics = trainer.evaluate()
# Log and save evaluation metrics
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
|