Spaces:
Sleeping
Sleeping
raseel-zymr
commited on
Commit
•
5aee298
1
Parent(s):
f70522c
Added logic to upload file , ask questions and get answers
Browse files- .gitignore +1 -0
- app.py +49 -30
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
__pycache__
|
|
|
|
1 |
__pycache__
|
2 |
+
.streamlit
|
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
|
4 |
#for textfiles
|
5 |
from langchain.document_loaders import TextLoader
|
@@ -20,49 +21,67 @@ os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["hf_api_key"]
|
|
20 |
st.title('Document Q&A - Ask anything in your Document')
|
21 |
st.sidebar.subheader('Upload document')
|
22 |
uploaded_file = st.sidebar.file_uploader("Upload File",type=['txt','pdf'])
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# url2 = "https://github.com/fabiomatricardi/cdQnA/raw/main/KS-all-info_rev1.txt"
|
24 |
# res = requests.get(url2)
|
25 |
# with open("KS-all-info_rev1.txt", "w") as f:
|
26 |
# f.write(res.text)
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
#
|
35 |
-
# loader = TextLoader('./KS-all-info_rev1.txt')
|
36 |
-
# documents = loader.load()
|
37 |
-
# import textwrap
|
38 |
-
# def wrap_text_preserve_newlines(text, width=110):
|
39 |
-
# # Split the input text into lines based on newline characters
|
40 |
-
# lines = text.split('\n')
|
41 |
-
# # Wrap each line individually
|
42 |
-
# wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
43 |
-
# # Join the wrapped lines back together using newline characters
|
44 |
-
# wrapped_text = '\n'.join(wrapped_lines)
|
45 |
-
# return wrapped_text
|
46 |
|
47 |
-
# # Text Splitter
|
48 |
-
# text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
49 |
-
# docs = text_splitter.split_documents(documents)
|
50 |
|
51 |
-
#
|
52 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
#
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
# llm=HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature":0, "max_length":512})
|
58 |
-
# llm2=HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large", model_kwargs={"temperature":0, "max_length":512})
|
59 |
-
# chain = load_qa_chain(llm2, chain_type="stuff")
|
60 |
|
61 |
-
# # Sample question
|
62 |
-
# # query = "What the actual issues and drawbacks ?"
|
63 |
|
64 |
-
|
65 |
-
|
66 |
|
67 |
|
68 |
# # PDFs
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
+
from io import StringIO
|
4 |
|
5 |
#for textfiles
|
6 |
from langchain.document_loaders import TextLoader
|
|
|
21 |
st.title('Document Q&A - Ask anything in your Document')
|
22 |
st.sidebar.subheader('Upload document')
|
23 |
uploaded_file = st.sidebar.file_uploader("Upload File",type=['txt','pdf'])
|
24 |
+
with st.sidebar.expander('File'):
|
25 |
+
if(uploaded_file):
|
26 |
+
st.info(uploaded_file.name)
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
# url2 = "https://github.com/fabiomatricardi/cdQnA/raw/main/KS-all-info_rev1.txt"
|
31 |
# res = requests.get(url2)
|
32 |
# with open("KS-all-info_rev1.txt", "w") as f:
|
33 |
# f.write(res.text)
|
34 |
+
if (uploaded_file):
|
35 |
+
st.subheader('Enter query')
|
36 |
+
query = st.text_input('Ask anything about the Document you uploaded')
|
37 |
+
stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
|
38 |
+
with open(uploaded_file.name, "w") as f:
|
39 |
+
f.write(stringio.read())
|
40 |
|
41 |
+
if(uploaded_file):
|
42 |
+
loader = TextLoader(uploaded_file.name)
|
43 |
+
documents = loader.load()
|
44 |
|
45 |
+
# Document Loader
|
46 |
+
#loader = TextLoader('./KS-all-info_rev1.txt')
|
47 |
|
48 |
+
# loader = TextLoader(os.path.join("./", uploaded_file.name))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
|
|
|
|
50 |
|
51 |
+
# import textwrap
|
52 |
+
# def wrap_text_preserve_newlines(text, width=110):
|
53 |
+
# # Split the input text into lines based on newline characters
|
54 |
+
# lines = text.split('\n')
|
55 |
+
# # Wrap each line individually
|
56 |
+
# wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
57 |
+
# # Join the wrapped lines back together using newline characters
|
58 |
+
# wrapped_text = '\n'.join(wrapped_lines)
|
59 |
+
# return wrapped_text
|
60 |
|
61 |
+
# Text Splitter
|
62 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
63 |
+
docs = text_splitter.split_documents(documents)
|
64 |
+
|
65 |
+
# Embeddings
|
66 |
+
embeddings = HuggingFaceEmbeddings()
|
67 |
+
|
68 |
+
#Create the vectorized db
|
69 |
+
db = FAISS.from_documents(docs, embeddings)
|
70 |
+
|
71 |
+
#llm=HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature":0, "max_length":512})
|
72 |
+
llm2=HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large", model_kwargs={"temperature":0, "max_length":512})
|
73 |
+
chain = load_qa_chain(llm2, chain_type="stuff")
|
74 |
+
|
75 |
+
# Sample question
|
76 |
+
#query = "What the actual issues and drawbacks ?"
|
77 |
+
|
78 |
+
docs = db.similarity_search(query)
|
79 |
+
answer = chain.run(input_documents=docs, question=query)
|
80 |
|
|
|
|
|
|
|
81 |
|
|
|
|
|
82 |
|
83 |
+
st.subheader('Answer')
|
84 |
+
st.write(answer)
|
85 |
|
86 |
|
87 |
# # PDFs
|