Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -25,35 +25,35 @@ def main():
|
|
25 |
st.write("This app predicts employee attrition using a trained CatBoost model.")
|
26 |
|
27 |
# Add inputs for user to input data
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
# Create a DataFrame to hold the user input data
|
46 |
input_data = pd.DataFrame({
|
47 |
'Age': [age],
|
48 |
'DistanceFromHome': [distance_from_home],
|
49 |
'EnvironmentSatisfaction': [environment_satisfaction],
|
50 |
-
'HourlyRate': [hourly_rate],
|
51 |
-
'JobInvolvement': [job_involvement],
|
52 |
-
'JobLevel': [job_level],
|
53 |
'JobSatisfaction': [job_satisfaction],
|
54 |
'MonthlyIncome': [monthly_income],
|
55 |
'NumCompaniesWorked': [num_companies_worked],
|
56 |
'OverTime': [over_time],
|
|
|
57 |
'PercentSalaryHike': [percent_salary_hike],
|
58 |
'StockOptionLevel': [stock_option_level],
|
59 |
'TrainingTimesLastYear': [training_times_last_year],
|
@@ -62,17 +62,6 @@ def main():
|
|
62 |
'YearsWithCurrManager': [years_with_curr_manager]
|
63 |
})
|
64 |
|
65 |
-
# Suggestions for retaining the employee
|
66 |
-
if predicted_to_leave:
|
67 |
-
st.subheader("Suggestions for Retaining the Employee:")
|
68 |
-
st.markdown("- Invest in orientation programs and career development for entry-level staff to contribute to higher retention.")
|
69 |
-
st.markdown("- Implement mentorship programs and career development initiatives aimed at engaging and retaining younger employees.")
|
70 |
-
st.markdown("- Offer robust training and development programs and regular promotion to foster career growth. This investment in skills and career advancement can contribute to higher job satisfaction and retention.")
|
71 |
-
st.markdown("- Recognize the diverse needs of employees based on marital status and consider tailoring benefits or support programs accordingly.")
|
72 |
-
st.markdown("- Consider offering benefits that cater to the unique needs of married, single, and divorced employees.")
|
73 |
-
st.markdown("- Introduce or enhance policies that support work-life balance for employees with families.")
|
74 |
-
st.markdown("- Recognize the unique challenges and opportunities within each department and tailor retention strategies accordingly.")
|
75 |
-
|
76 |
# Make predictions
|
77 |
prediction = model.predict(input_data)
|
78 |
probability = model.predict_proba(input_data)[:, 1]
|
|
|
25 |
st.write("This app predicts employee attrition using a trained CatBoost model.")
|
26 |
|
27 |
# Add inputs for user to input data
|
28 |
+
col1, col2, col3 = st.columns(3)
|
29 |
+
with col1:
|
30 |
+
age = st.slider("Age", min_value=18, max_value=70, value=30)
|
31 |
+
environment_satisfaction = st.slider("Environment Satisfaction", min_value=1, max_value=4, value=2)
|
32 |
+
job_satisfaction = st.slider("Job Satisfaction", min_value=1, max_value=4, value=2)
|
33 |
+
monthly_income = st.slider("Monthly Income", min_value=1000, max_value=20000, value=5000)
|
34 |
+
over_time = st.checkbox("Over Time")
|
35 |
+
with col2:
|
36 |
+
distance_from_home = st.slider("Distance From Home", min_value=1, max_value=30, value=10)
|
37 |
+
job_involvement = st.slider("Job Involvement", min_value=1, max_value=4, value=2)
|
38 |
+
num_companies_worked = st.slider("Number of Companies Worked", min_value=0, max_value=10, value=2)
|
39 |
+
percent_salary_hike = st.slider("Percent Salary Hike", min_value=10, max_value=25, value=15)
|
40 |
+
stock_option_level = st.slider("Stock Option Level", min_value=0, max_value=3, value=1)
|
41 |
+
with col3:
|
42 |
+
training_times_last_year = st.slider("Training Times Last Year", min_value=0, max_value=6, value=2)
|
43 |
+
work_life_balance = st.slider("Work Life Balance", min_value=1, max_value=4, value=2)
|
44 |
+
years_since_last_promotion = st.slider("Years Since Last Promotion", min_value=0, max_value=15, value=3)
|
45 |
+
years_with_curr_manager = st.slider("Years With Current Manager", min_value=0, max_value=15, value=3)
|
46 |
|
47 |
# Create a DataFrame to hold the user input data
|
48 |
input_data = pd.DataFrame({
|
49 |
'Age': [age],
|
50 |
'DistanceFromHome': [distance_from_home],
|
51 |
'EnvironmentSatisfaction': [environment_satisfaction],
|
|
|
|
|
|
|
52 |
'JobSatisfaction': [job_satisfaction],
|
53 |
'MonthlyIncome': [monthly_income],
|
54 |
'NumCompaniesWorked': [num_companies_worked],
|
55 |
'OverTime': [over_time],
|
56 |
+
'JobInvolvement': [job_involvement],
|
57 |
'PercentSalaryHike': [percent_salary_hike],
|
58 |
'StockOptionLevel': [stock_option_level],
|
59 |
'TrainingTimesLastYear': [training_times_last_year],
|
|
|
62 |
'YearsWithCurrManager': [years_with_curr_manager]
|
63 |
})
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# Make predictions
|
66 |
prediction = model.predict(input_data)
|
67 |
probability = model.predict_proba(input_data)[:, 1]
|