Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -26,58 +26,41 @@ def main():
|
|
26 |
st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
|
27 |
st.write("Please provide the following information to make a prediction:")
|
28 |
|
29 |
-
# Define layout with
|
30 |
-
col1, col2
|
31 |
|
32 |
# Column 1
|
33 |
with col1:
|
34 |
-
age = st.slider("Age", min_value=18, max_value=70
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
job_satisfaction = st.select_slider("Job Satisfaction", options=[1, 2, 3, 4], value=2)
|
42 |
|
43 |
# Column 2
|
44 |
with col2:
|
45 |
-
monthly_income = st.slider("Monthly Income", min_value=1000, max_value=20000, value=5000)
|
46 |
-
num_companies_worked = st.slider("Number of Companies Worked", min_value=0, max_value=10, value=2)
|
47 |
over_time = st.checkbox("Over Time")
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
# Column 3
|
53 |
-
with col3:
|
54 |
-
training_times_last_year = st.slider("Training Times Last Year", min_value=0, max_value=6, value=2)
|
55 |
-
work_life_balance = st.select_slider("Work Life Balance", options=[1, 2, 3, 4], value=2)
|
56 |
-
years_at_company = st.slider("Years at Company", min_value=0, max_value=40, value=5)
|
57 |
-
years_since_last_promotion = st.slider("Years Since Last Promotion", min_value=0, max_value=15, value=3)
|
58 |
-
years_with_curr_manager = st.slider("Years With Current Manager", min_value=0, max_value=17, value=5)
|
59 |
|
60 |
# Create a DataFrame to hold the user input data
|
61 |
input_data = pd.DataFrame({
|
62 |
'Age': [age],
|
63 |
-
'BusinessTravel': [business_travel],
|
64 |
-
'Department': [department],
|
65 |
-
'EducationField': [education_field],
|
66 |
-
'EnvironmentSatisfaction': [environment_satisfaction],
|
67 |
-
'Gender': [gender],
|
68 |
-
'JobRole': [job_role],
|
69 |
-
'JobSatisfaction': [job_satisfaction],
|
70 |
'MonthlyIncome': [monthly_income],
|
71 |
'NumCompaniesWorked': [num_companies_worked],
|
72 |
-
'OverTime': [over_time],
|
73 |
'PercentSalaryHike': [percent_salary_hike],
|
74 |
-
'RelationshipSatisfaction': [relationship_satisfaction],
|
75 |
-
'StockOptionLevel': [stock_option_level],
|
76 |
'TrainingTimesLastYear': [training_times_last_year],
|
77 |
-
'WorkLifeBalance': [work_life_balance],
|
78 |
-
'YearsAtCompany': [years_at_company],
|
79 |
'YearsSinceLastPromotion': [years_since_last_promotion],
|
80 |
-
'YearsWithCurrManager': [years_with_curr_manager]
|
|
|
|
|
|
|
|
|
|
|
81 |
})
|
82 |
|
83 |
# Make predictions
|
@@ -101,7 +84,7 @@ def main():
|
|
101 |
st.markdown("- Recognize the unique challenges and opportunities within each department and tailor retention strategies accordingly.")
|
102 |
|
103 |
# Display probability
|
104 |
-
st.write(f"Probability of Attrition: {probability[0]:.2f}")
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
-
main()
|
|
|
26 |
st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
|
27 |
st.write("Please provide the following information to make a prediction:")
|
28 |
|
29 |
+
# Define layout with two columns
|
30 |
+
col1, col2 = st.columns(2)
|
31 |
|
32 |
# Column 1
|
33 |
with col1:
|
34 |
+
age = st.slider("Age", min_value=18, max_value=70)
|
35 |
+
monthly_income = st.slider("Monthly Income", min_value=1000, max_value=20000)
|
36 |
+
num_companies_worked = st.slider("Number of Companies Worked", min_value=0, max_value=10)
|
37 |
+
percent_salary_hike = st.slider("Percent Salary Hike", min_value=10, max_value=25)
|
38 |
+
training_times_last_year = st.slider("Training Times Last Year", min_value=0, max_value=6)
|
39 |
+
years_since_last_promotion = st.slider("Years Since Last Promotion", min_value=0, max_value=15)
|
40 |
+
years_with_curr_manager = st.slider("Years With Current Manager", min_value=0, max_value=15)
|
|
|
41 |
|
42 |
# Column 2
|
43 |
with col2:
|
|
|
|
|
44 |
over_time = st.checkbox("Over Time")
|
45 |
+
work_life_balance = st.select_slider("Work Life Balance", options=[1, 2, 3, 4])
|
46 |
+
environment_satisfaction = st.select_slider("Environment Satisfaction", options=[1, 2, 3, 4])
|
47 |
+
job_satisfaction = st.select_slider("Job Satisfaction", options=[1, 2, 3, 4])
|
48 |
+
relationship_satisfaction = st.select_slider("Relationship Satisfaction", options=[1, 2, 3, 4])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Create a DataFrame to hold the user input data
|
51 |
input_data = pd.DataFrame({
|
52 |
'Age': [age],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
'MonthlyIncome': [monthly_income],
|
54 |
'NumCompaniesWorked': [num_companies_worked],
|
|
|
55 |
'PercentSalaryHike': [percent_salary_hike],
|
|
|
|
|
56 |
'TrainingTimesLastYear': [training_times_last_year],
|
|
|
|
|
57 |
'YearsSinceLastPromotion': [years_since_last_promotion],
|
58 |
+
'YearsWithCurrManager': [years_with_curr_manager],
|
59 |
+
'OverTime': [over_time],
|
60 |
+
'WorkLifeBalance': [work_life_balance],
|
61 |
+
'EnvironmentSatisfaction': [environment_satisfaction],
|
62 |
+
'JobSatisfaction': [job_satisfaction],
|
63 |
+
'RelationshipSatisfaction': [relationship_satisfaction]
|
64 |
})
|
65 |
|
66 |
# Make predictions
|
|
|
84 |
st.markdown("- Recognize the unique challenges and opportunities within each department and tailor retention strategies accordingly.")
|
85 |
|
86 |
# Display probability
|
87 |
+
st.write(f"Probability of Attrition: {probability[0]*100:.2f}%")
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
+
main()
|