rasmodev commited on
Commit
d7717b4
1 Parent(s): 1df1164

streamlit app

Browse files
Files changed (1) hide show
  1. app.py +100 -0
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pickle
3
+ import pandas as pd
4
+ from catboost import CatBoostClassifier
5
+
6
+ # Load the trained model and unique values from the pickle file
7
+ with open('model_and_key_components.pkl', 'rb') as file:
8
+ saved_components = pickle.load(file)
9
+
10
+ model = saved_components['model']
11
+ unique_values = saved_components['unique_values']
12
+
13
+ # Define the Streamlit app
14
+ def main():
15
+ st.title("Employee Attrition Prediction App")
16
+ st.sidebar.title("Model Settings")
17
+
18
+ # Sidebar inputs
19
+ with st.sidebar.beta_expander("View Unique Values"):
20
+ st.write("Unique values for each feature:")
21
+ for column, values in unique_values.items():
22
+ st.write(f"- {column}: {values}")
23
+
24
+ # Main content
25
+ st.write("This app predicts employee attrition using a trained CatBoost model.")
26
+
27
+ # Add inputs for user to input data
28
+ age = st.slider("Age", min_value=18, max_value=70, value=30)
29
+ distance_from_home = st.slider("Distance From Home", min_value=1, max_value=30, value=10)
30
+ environment_satisfaction = st.slider("Environment Satisfaction", min_value=1, max_value=4, value=2)
31
+ hourly_rate = st.slider("Hourly Rate", min_value=30, max_value=100, value=65)
32
+ job_involvement = st.slider("Job Involvement", min_value=1, max_value=4, value=2)
33
+ job_level = st.slider("Job Level", min_value=1, max_value=5, value=3)
34
+ job_satisfaction = st.slider("Job Satisfaction", min_value=1, max_value=4, value=2)
35
+ monthly_income = st.slider("Monthly Income", min_value=1000, max_value=20000, value=5000)
36
+ num_companies_worked = st.slider("Number of Companies Worked", min_value=0, max_value=10, value=2)
37
+ over_time = st.checkbox("Over Time")
38
+ percent_salary_hike = st.slider("Percent Salary Hike", min_value=10, max_value=25, value=15)
39
+ stock_option_level = st.slider("Stock Option Level", min_value=0, max_value=3, value=1)
40
+ training_times_last_year = st.slider("Training Times Last Year", min_value=0, max_value=6, value=2)
41
+ work_life_balance = st.slider("Work Life Balance", min_value=1, max_value=4, value=2)
42
+ years_since_last_promotion = st.slider("Years Since Last Promotion", min_value=0, max_value=15, value=3)
43
+ years_with_curr_manager = st.slider("Years With Current Manager", min_value=0, max_value=15, value=3)
44
+
45
+ # Create a DataFrame to hold the user input data
46
+ input_data = pd.DataFrame({
47
+ 'Age': [age],
48
+ 'DistanceFromHome': [distance_from_home],
49
+ 'EnvironmentSatisfaction': [environment_satisfaction],
50
+ 'HourlyRate': [hourly_rate],
51
+ 'JobInvolvement': [job_involvement],
52
+ 'JobLevel': [job_level],
53
+ 'JobSatisfaction': [job_satisfaction],
54
+ 'MonthlyIncome': [monthly_income],
55
+ 'NumCompaniesWorked': [num_companies_worked],
56
+ 'OverTime': [over_time],
57
+ 'PercentSalaryHike': [percent_salary_hike],
58
+ 'StockOptionLevel': [stock_option_level],
59
+ 'TrainingTimesLastYear': [training_times_last_year],
60
+ 'WorkLifeBalance': [work_life_balance],
61
+ 'YearsSinceLastPromotion': [years_since_last_promotion],
62
+ 'YearsWithCurrManager': [years_with_curr_manager]
63
+ })
64
+
65
+ # Suggestions for retaining the employee
66
+ if predicted_to_leave:
67
+ st.subheader("Suggestions for Retaining the Employee:")
68
+ st.markdown("- Invest in orientation programs and career development for entry-level staff to contribute to higher retention.")
69
+ st.markdown("- Implement mentorship programs and career development initiatives aimed at engaging and retaining younger employees.")
70
+ st.markdown("- Offer robust training and development programs and regular promotion to foster career growth. This investment in skills and career advancement can contribute to higher job satisfaction and retention.")
71
+ st.markdown("- Recognize the diverse needs of employees based on marital status and consider tailoring benefits or support programs accordingly.")
72
+ st.markdown("- Consider offering benefits that cater to the unique needs of married, single, and divorced employees.")
73
+ st.markdown("- Introduce or enhance policies that support work-life balance for employees with families.")
74
+ st.markdown("- Recognize the unique challenges and opportunities within each department and tailor retention strategies accordingly.")
75
+
76
+ # Make predictions
77
+ prediction = model.predict(input_data)
78
+ probability = model.predict_proba(input_data)[:, 1]
79
+
80
+ # Display prediction
81
+ if prediction[0] == 0:
82
+ st.success("Employee is predicted to stay (Attrition = No)")
83
+ else:
84
+ st.error("Employee is predicted to leave (Attrition = Yes)")
85
+
86
+ # Offer recommendations for retaining the employee
87
+ st.subheader("Suggestions for retaining the employee:")
88
+ st.markdown("- Invest in orientation programs and career development for entry-level staff, which could contribute to higher retention.")
89
+ st.markdown("- Implement mentorship programs and career development initiatives aimed at engaging and retaining younger employees.")
90
+ st.markdown("- Offer robust training and development programs and regular promotions to foster career growth. This investment in skills and career advancement can contribute to higher job satisfaction and retention.")
91
+ st.markdown("- Recognize the diverse needs of employees based on marital status and consider tailoring benefits or support programs accordingly.")
92
+ st.markdown("- Consider offering benefits that cater to the unique needs of married, single, and divorced employees.")
93
+ st.markdown("- Introduce or enhance policies that support work-life balance for employees with families.")
94
+ st.markdown("- Recognize the unique challenges and opportunities within each department and tailor retention strategies accordingly.")
95
+
96
+ # Display probability
97
+ st.write(f"Probability of Attrition: {probability[0]:.2f}")
98
+
99
+ if __name__ == "__main__":
100
+ main()