rbanfield's picture
Update app.py
4278808
import os
import json
import time
import base64
import requests
import gradio as gr
username = os.environ.get("CLIENT_ID")
passwd = os.environ.get("CLIENT_SECRETS")
def authorization():
url = "https://stage.id.trimblecloud.com/oauth/token"
credential_pair = f"{username}:{passwd}"
payload = "grant_type=client_credentials&scope=DLPointCloudSegmentation"
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"Authorization": f"Basic {base64.b64encode(credential_pair.encode('utf-8')).decode('utf-8')}",
}
response = requests.request("POST", url, headers=headers, data=payload)
response.raise_for_status()
print("Succesfully authenticated")
auth_token = json.loads(response.text)["access_token"]
return auth_token
def create_file(auth_token, input_filename):
url = "https://cloud.stage.api.trimblecloud.com/dataocean/api/3.0/api/files"
payload = json.dumps({"file": {"path": input_filename, "regions": ["us1"]}})
headers = {
"Authorization": f"Bearer {auth_token}",
"Content-Type": "application/json",
}
response = requests.request("POST", url, headers=headers, data=payload)
response.raise_for_status()
print("File created successfully")
file_upload_url = json.loads(response.text)["file"]["upload"]["url"]
return file_upload_url
def upload_file(url, file):
with open(file.name, "rb") as lasFile:
payload = lasFile.read()
headers = {"Content-Type": "application/octet-stream"}
response = requests.request("PUT", url, headers=headers, data=payload)
response.raise_for_status()
print("Upload was successful")
def start_execution(auth_token, input_filename, output_filename="output.las"):
url = "https://cloud.stage.api.trimblecloud.com/Processing/api/1/api/executions"
payload = json.dumps(
{
"execution": {
"procedure_id": "a7c4f9c3-b21a-4c9c-b4df-3dc6ba8934d9",
"region": "aws-us1",
"parameters": {
"source_path": input_filename,
"regions": ["us1"],
"output_path": output_filename,
},
}
}
)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {auth_token}",
}
response = requests.request("POST", url, headers=headers, data=payload)
response.raise_for_status()
print("Execution has started")
execution_id = json.loads(response.text)["execution"]["id"]
return execution_id
def track_execution(auth_token, execution_id, output_filename):
url = "https://cloud.stage.api.trimblecloud.com/Processing/api/1/api/executions"
payload = {}
headers = {
"Authorization": f"Bearer {auth_token}",
}
response = requests.request("GET", url, headers=headers, data=payload)
status = json.loads(response.text)["items"][0]["execution_status"]
while status != "FINISHED":
response = requests.request("GET", url, headers=headers, data=payload)
status = json.loads(response.text)["items"][0]["execution_status"]
time.sleep(1)
return download_output(auth_token, output_filename)
def download_output(auth_token, output_filename):
url = f"https://cloud.stage.api.trimblecloud.com/dataocean/api/3.0/api/files?path={output_filename}"
payload = ""
headers = {
"Authorization": f"Bearer {auth_token}",
"Content-Type": "application/json",
}
response = requests.request("GET", url, headers=headers, data=payload)
response.raise_for_status()
print("File downloading")
response = json.loads(response.text)
download_url = response["file"]["download"]["url"]
return download_url
def predict(input_file):
input_filename = "input.las"
output_filename = "output.las"
auth_token = authorization()
file_upload_url = create_file(auth_token, input_filename)
upload_file(file_upload_url, input_file)
execution_id = start_execution(auth_token, input_filename, output_filename)
download_url = track_execution(auth_token, execution_id, output_filename)
html_content = f'<a href="{download_url}" download><button type="button" style="height:50px; width:100px; background-color:blue; border-color:black; color:white">Download</button></a>'
return html_content
demo = gr.Interface(
# title="Trimble AI 3D Point Cloud Segmentation",
fn=predict,
inputs=gr.File(file_types=[".las"], file_count="single"),
outputs=["html"],
examples=["westminster.las"],
cache_examples=False,
theme='trimble/trimble_ai_theme',
description="""
<center><img src="https://huggingface.co/spaces/trimble/trimble_ai_theme/resolve/main/images/logo.png" alt="Trimble AI Logo" class="center"></center><BR>
This is a technology demonstration of Trimble AI's 3D Point Cloud Segmentation running on Trimble Cloud Core's Pegasus Processing Framework. The point cloud is uploaded on behalf of the user into Pegasus, then the result is offered as a downloadable link.
""").queue(concurrency_count=512, max_size=512)
demo.launch()