Vishakaraj commited on
Commit
74ce6d9
1 Parent(s): 0fd633f

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. README.md +0 -2
  3. app.py +11 -6
  4. test.las +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ test.las filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -4,5 +4,3 @@ app_file: app.py
4
  sdk: gradio
5
  sdk_version: 3.43.1
6
  ---
7
-
8
- This is a technology demonstration of Trimble AI's 3D Point Cloud Segmentation running on Trimble Cloud Core's Pegasus Processing Framework. The point cloud is uploaded on behalf of the user into Pegasus, then the result is offered as a downloadable link.
 
4
  sdk: gradio
5
  sdk_version: 3.43.1
6
  ---
 
 
app.py CHANGED
@@ -8,6 +8,7 @@ import gradio as gr
8
  username = os.environ.get("CLIENT_ID")
9
  passwd = os.environ.get("CLIENT_SECRETS")
10
 
 
11
  def authorization():
12
  url = "https://stage.id.trimblecloud.com/oauth/token"
13
  credential_pair = f"{username}:{passwd}"
@@ -125,27 +126,31 @@ def download_output(auth_token, output_filename):
125
 
126
  return download_url
127
 
 
128
  def predict(input_file):
129
  input_filename = "input.las"
130
  output_filename = "output.las"
131
  auth_token = authorization()
132
  file_upload_url = create_file(auth_token, input_filename)
133
  upload_file(file_upload_url, input_file)
134
- execution_id = start_execution(
135
- auth_token, input_filename, output_filename
136
- )
137
  download_url = track_execution(auth_token, execution_id, output_filename)
138
 
139
  html_content = f'<a href="{download_url}">Download output file</a>'
140
 
 
 
 
 
141
 
142
- return "Inference has finished. Click the download button to access the output file", html_content
143
 
144
  demo = gr.Interface(
145
- title="Point Cloud inference on the Trimble Cloud",
146
  fn=predict,
147
  inputs=gr.File(file_types=[".las"], file_count="single"),
148
  outputs=[gr.Textbox(), "html"],
 
 
149
  )
150
 
151
- demo.queue(concurrency_count=512, max_size=512).launch()
 
8
  username = os.environ.get("CLIENT_ID")
9
  passwd = os.environ.get("CLIENT_SECRETS")
10
 
11
+
12
  def authorization():
13
  url = "https://stage.id.trimblecloud.com/oauth/token"
14
  credential_pair = f"{username}:{passwd}"
 
126
 
127
  return download_url
128
 
129
+
130
  def predict(input_file):
131
  input_filename = "input.las"
132
  output_filename = "output.las"
133
  auth_token = authorization()
134
  file_upload_url = create_file(auth_token, input_filename)
135
  upload_file(file_upload_url, input_file)
136
+ execution_id = start_execution(auth_token, input_filename, output_filename)
 
 
137
  download_url = track_execution(auth_token, execution_id, output_filename)
138
 
139
  html_content = f'<a href="{download_url}">Download output file</a>'
140
 
141
+ return (
142
+ "Inference has finished. Click the download button to access the output file",
143
+ html_content,
144
+ )
145
 
 
146
 
147
  demo = gr.Interface(
148
+ title="Point Cloud Segmentation-Trimble Cloud",
149
  fn=predict,
150
  inputs=gr.File(file_types=[".las"], file_count="single"),
151
  outputs=[gr.Textbox(), "html"],
152
+ examples=["test.las"],
153
+ description="This is a technology demonstration of Trimble AI's 3D Point Cloud Segmentation running on Trimble Cloud Core's Pegasus Processing Framework. The point cloud is uploaded on behalf of the user into Pegasus, then the result is offered as a downloadable link.",
154
  )
155
 
156
+ demo.queue(concurrency_count=512, max_size=512).launch()
test.las ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:727bbb3b6a5f4a4a1367992d72a4d0fdb7b6249bb1df965b420505f4f414fb57
3
+ size 132575085