import os import json import time import base64 import requests import gradio as gr username = os.environ.get("CLIENT_ID") passwd = os.environ.get("CLIENT_SECRETS") def authorization(): url = "https://stage.id.trimblecloud.com/oauth/token" credential_pair = f"{username}:{passwd}" payload = "grant_type=client_credentials&scope=DLPointCloudSegmentation" headers = { "Content-Type": "application/x-www-form-urlencoded", "Authorization": f"Basic {base64.b64encode(credential_pair.encode('utf-8')).decode('utf-8')}", } response = requests.request("POST", url, headers=headers, data=payload) response.raise_for_status() print("Succesfully authenticated") auth_token = json.loads(response.text)["access_token"] return auth_token def create_file(auth_token, input_filename): url = "https://cloud.stage.api.trimblecloud.com/dataocean/api/3.0/api/files" payload = json.dumps({"file": {"path": input_filename, "regions": ["us1"]}}) headers = { "Authorization": f"Bearer {auth_token}", "Content-Type": "application/json", } response = requests.request("POST", url, headers=headers, data=payload) response.raise_for_status() print("File created successfully") file_upload_url = json.loads(response.text)["file"]["upload"]["url"] return file_upload_url def upload_file(url, file): with open(file.name, "rb") as lasFile: payload = lasFile.read() headers = {"Content-Type": "application/octet-stream"} response = requests.request("PUT", url, headers=headers, data=payload) response.raise_for_status() print("Upload was successful") def start_execution(auth_token, input_filename, output_filename="output.las"): url = "https://cloud.stage.api.trimblecloud.com/Processing/api/1/api/executions" payload = json.dumps( { "execution": { "procedure_id": "a7c4f9c3-b21a-4c9c-b4df-3dc6ba8934d9", "region": "aws-us1", "parameters": { "source_path": input_filename, "regions": ["us1"], "output_path": output_filename, }, } } ) headers = { "Content-Type": "application/json", "Authorization": f"Bearer {auth_token}", } response = requests.request("POST", url, headers=headers, data=payload) response.raise_for_status() print("Execution has started") execution_id = json.loads(response.text)["execution"]["id"] return execution_id def track_execution(auth_token, execution_id, output_filename): url = "https://cloud.stage.api.trimblecloud.com/Processing/api/1/api/executions" payload = {} headers = { "Authorization": f"Bearer {auth_token}", } response = requests.request("GET", url, headers=headers, data=payload) status = json.loads(response.text)["items"][0]["execution_status"] while status != "FINISHED": response = requests.request("GET", url, headers=headers, data=payload) status = json.loads(response.text)["items"][0]["execution_status"] time.sleep(1) return download_output(auth_token, output_filename) def download_output(auth_token, output_filename): url = f"https://cloud.stage.api.trimblecloud.com/dataocean/api/3.0/api/files?path={output_filename}" payload = "" headers = { "Authorization": f"Bearer {auth_token}", "Content-Type": "application/json", } response = requests.request("GET", url, headers=headers, data=payload) response.raise_for_status() print("File downloading") response = json.loads(response.text) download_url = response["file"]["download"]["url"] return download_url def predict(input_file): input_filename = "input.las" output_filename = "output.las" auth_token = authorization() file_upload_url = create_file(auth_token, input_filename) upload_file(file_upload_url, input_file) execution_id = start_execution(auth_token, input_filename, output_filename) download_url = track_execution(auth_token, execution_id, output_filename) html_content = f'' return html_content demo = gr.Interface( # title="Trimble AI 3D Point Cloud Segmentation", fn=predict, inputs=gr.File(file_types=[".las"], file_count="single"), outputs=["html"], examples=["westminster.las"], cache_examples=False, theme='trimble/trimble_ai_theme', description="""
Trimble AI Logo

This is a technology demonstration of Trimble AI's 3D Point Cloud Segmentation running on Trimble Cloud Core's Pegasus Processing Framework. The point cloud is uploaded on behalf of the user into Pegasus, then the result is offered as a downloadable link. """).queue(concurrency_count=512, max_size=512) demo.launch()