File size: 5,677 Bytes
f6f64ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Literal, Optional, Sequence

from transformers.utils import cached_file

from ..extras.constants import DATA_CONFIG
from ..extras.misc import use_modelscope


@dataclass
class DatasetAttr:
    r"""
    Dataset attributes.
    """

    # basic configs
    load_from: Literal["hf_hub", "ms_hub", "script", "file"]
    dataset_name: str
    formatting: Literal["alpaca", "sharegpt"] = "alpaca"
    ranking: bool = False
    # extra configs
    subset: Optional[str] = None
    split: str = "train"
    folder: Optional[str] = None
    num_samples: Optional[int] = None
    # common columns
    system: Optional[str] = None
    tools: Optional[str] = None
    images: Optional[str] = None
    videos: Optional[str] = None
    # rlhf columns
    chosen: Optional[str] = None
    rejected: Optional[str] = None
    kto_tag: Optional[str] = None
    # alpaca columns
    prompt: Optional[str] = "instruction"
    query: Optional[str] = "input"
    response: Optional[str] = "output"
    history: Optional[str] = None
    # sharegpt columns
    messages: Optional[str] = "conversations"
    # sharegpt tags
    role_tag: Optional[str] = "from"
    content_tag: Optional[str] = "value"
    user_tag: Optional[str] = "human"
    assistant_tag: Optional[str] = "gpt"
    observation_tag: Optional[str] = "observation"
    function_tag: Optional[str] = "function_call"
    system_tag: Optional[str] = "system"

    def __repr__(self) -> str:
        return self.dataset_name

    def set_attr(self, key: str, obj: Dict[str, Any], default: Optional[Any] = None) -> None:
        setattr(self, key, obj.get(key, default))


def get_dataset_list(dataset_names: Optional[Sequence[str]], dataset_dir: str) -> List["DatasetAttr"]:
    r"""
    Gets the attributes of the datasets.
    """
    if dataset_names is None:
        dataset_names = []

    if dataset_dir == "ONLINE":
        dataset_info = None
    else:
        if dataset_dir.startswith("REMOTE:"):
            config_path = cached_file(path_or_repo_id=dataset_dir[7:], filename=DATA_CONFIG, repo_type="dataset")
        else:
            config_path = os.path.join(dataset_dir, DATA_CONFIG)

        try:
            with open(config_path, "r") as f:
                dataset_info = json.load(f)
        except Exception as err:
            if len(dataset_names) != 0:
                raise ValueError("Cannot open {} due to {}.".format(config_path, str(err)))

            dataset_info = None

    dataset_list: List["DatasetAttr"] = []
    for name in dataset_names:
        if dataset_info is None:  # dataset_dir is ONLINE
            load_from = "ms_hub" if use_modelscope() else "hf_hub"
            dataset_attr = DatasetAttr(load_from, dataset_name=name)
            dataset_list.append(dataset_attr)
            continue

        if name not in dataset_info:
            raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))

        has_hf_url = "hf_hub_url" in dataset_info[name]
        has_ms_url = "ms_hub_url" in dataset_info[name]

        if has_hf_url or has_ms_url:
            if (use_modelscope() and has_ms_url) or (not has_hf_url):
                dataset_attr = DatasetAttr("ms_hub", dataset_name=dataset_info[name]["ms_hub_url"])
            else:
                dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
        elif "script_url" in dataset_info[name]:
            dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
        else:
            dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])

        dataset_attr.set_attr("formatting", dataset_info[name], default="alpaca")
        dataset_attr.set_attr("ranking", dataset_info[name], default=False)
        dataset_attr.set_attr("subset", dataset_info[name])
        dataset_attr.set_attr("split", dataset_info[name], default="train")
        dataset_attr.set_attr("folder", dataset_info[name])
        dataset_attr.set_attr("num_samples", dataset_info[name])

        if "columns" in dataset_info[name]:
            column_names = ["system", "tools", "images", "videos", "chosen", "rejected", "kto_tag"]
            if dataset_attr.formatting == "alpaca":
                column_names.extend(["prompt", "query", "response", "history"])
            else:
                column_names.extend(["messages"])

            for column_name in column_names:
                dataset_attr.set_attr(column_name, dataset_info[name]["columns"])

        if dataset_attr.formatting == "sharegpt" and "tags" in dataset_info[name]:
            tag_names = (
                "role_tag",
                "content_tag",
                "user_tag",
                "assistant_tag",
                "observation_tag",
                "function_tag",
                "system_tag",
            )
            for tag in tag_names:
                dataset_attr.set_attr(tag, dataset_info[name]["tags"])

        dataset_list.append(dataset_attr)

    return dataset_list