File size: 7,800 Bytes
f6f64ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, Any, Dict, Optional, TypedDict

import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForVision2Seq, AutoProcessor, AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead

from ..extras.logging import get_logger
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_ms
from .adapter import init_adapter
from .model_utils.liger_kernel import apply_liger_kernel
from .model_utils.misc import register_autoclass
from .model_utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
from .model_utils.unsloth import load_unsloth_pretrained_model
from .model_utils.valuehead import load_valuehead_params
from .patcher import patch_config, patch_model, patch_processor, patch_tokenizer, patch_valuehead_model


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ProcessorMixin

    from ..hparams import FinetuningArguments, ModelArguments


logger = get_logger(__name__)


class TokenizerModule(TypedDict):
    tokenizer: "PreTrainedTokenizer"
    processor: Optional["ProcessorMixin"]


def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
    r"""
    Gets arguments to load config/tokenizer/model.

    Note: including inplace operation of model_args.
    """
    skip_check_imports()
    model_args.model_name_or_path = try_download_model_from_ms(model_args)
    return {
        "trust_remote_code": True,
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "token": model_args.hf_hub_token,
    }


def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
    r"""
    Loads pretrained tokenizer and optionally loads processor.

    Note: including inplace operation of model_args.
    """
    init_kwargs = _get_init_kwargs(model_args)
    config = load_config(model_args)
    try:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            use_fast=model_args.use_fast_tokenizer,
            split_special_tokens=model_args.split_special_tokens,
            padding_side="right",
            **init_kwargs,
        )
    except ValueError:  # try the fast one
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            use_fast=True,
            padding_side="right",
            **init_kwargs,
        )

    if model_args.new_special_tokens is not None:
        num_added_tokens = tokenizer.add_special_tokens(
            dict(additional_special_tokens=model_args.new_special_tokens),
            replace_additional_special_tokens=False,
        )
        logger.info("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
        if num_added_tokens > 0 and not model_args.resize_vocab:
            model_args.resize_vocab = True
            logger.warning("New tokens have been added, changed `resize_vocab` to True.")

    patch_tokenizer(tokenizer)
    try:
        processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs)
        patch_processor(processor, config, tokenizer, model_args)
    except Exception:
        processor = None

    # Avoid load tokenizer, see:
    # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/auto/processing_auto.py#L324
    if "Processor" not in processor.__class__.__name__:
        processor = None

    return {"tokenizer": tokenizer, "processor": processor}


def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
    r"""
    Loads model config.
    """
    init_kwargs = _get_init_kwargs(model_args)
    return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)


def load_model(
    tokenizer: "PreTrainedTokenizer",
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
    is_trainable: bool = False,
    add_valuehead: bool = False,
) -> "PreTrainedModel":
    r"""
    Loads pretrained model.
    """
    init_kwargs = _get_init_kwargs(model_args)
    config = load_config(model_args)
    patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
    apply_liger_kernel(config, model_args, is_trainable, require_logits=(finetuning_args.stage not in ["pt", "sft"]))

    model = None
    lazy_load = False
    if model_args.use_unsloth:
        if model_args.adapter_name_or_path is not None:
            lazy_load = True
        elif is_trainable:
            model = load_unsloth_pretrained_model(config, model_args)

    if model is None and not lazy_load:
        init_kwargs["config"] = config
        init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path

        if model_args.mixture_of_depths == "load":
            model = load_mod_pretrained_model(**init_kwargs)
        else:
            if type(config) in AutoModelForVision2Seq._model_mapping.keys():  # assume built-in models
                load_class = AutoModelForVision2Seq
            else:
                load_class = AutoModelForCausalLM
            if model_args.train_from_scratch:
                model = load_class.from_config(config)
            else:
                model = load_class.from_pretrained(**init_kwargs)

        if model_args.mixture_of_depths == "convert":
            model = convert_pretrained_model_to_mod(model, config, model_args)

    if not lazy_load:
        patch_model(model, tokenizer, model_args, is_trainable, add_valuehead)
        register_autoclass(config, model, tokenizer)

    model = init_adapter(config, model, model_args, finetuning_args, is_trainable)

    if add_valuehead:
        model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
        patch_valuehead_model(model)

        if model_args.adapter_name_or_path is not None:
            vhead_path = model_args.adapter_name_or_path[-1]
        else:
            vhead_path = model_args.model_name_or_path

        vhead_params = load_valuehead_params(vhead_path, model_args)
        if vhead_params is not None:
            model.load_state_dict(vhead_params, strict=False)
            logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path))

    if not is_trainable:
        model.requires_grad_(False)
        for param in model.parameters():
            if param.data.dtype == torch.float32 and model_args.compute_dtype != torch.float32:
                param.data = param.data.to(model_args.compute_dtype)

        model.eval()
    else:
        model.train()

    trainable_params, all_param = count_parameters(model)
    if is_trainable:
        param_stats = "trainable params: {:,} || all params: {:,} || trainable%: {:.4f}".format(
            trainable_params, all_param, 100 * trainable_params / all_param
        )
    else:
        param_stats = "all params: {:,}".format(all_param)

    logger.info(param_stats)

    if model_args.print_param_status:
        for name, param in model.named_parameters():
            print(
                "name: {}, dtype: {}, device: {}, trainable: {}".format(
                    name, param.dtype, param.device, param.requires_grad
                )
            )

    return model