Spaces:
Runtime error
Runtime error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import re | |
from abc import ABC, abstractmethod | |
from collections import namedtuple | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Tuple, Union | |
from typing_extensions import override | |
from .data_utils import SLOTS | |
DEFAULT_TOOL_PROMPT = ( | |
"You have access to the following tools:\n{tool_text}" | |
"Use the following format if using a tool:\n" | |
"```\n" | |
"Action: tool name (one of [{tool_names}])\n" | |
"Action Input: the input to the tool, in a JSON format representing the kwargs " | |
"""(e.g. ```{{"input": "hello world", "num_beams": 5}}```)\n""" | |
"```\n" | |
) | |
GLM4_TOOL_PROMPT = ( | |
"你是一个名为 ChatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的," | |
"你的任务是针对用户的问题和要求提供适当的答复和支持。# 可用工具{tool_text}" | |
) | |
FunctionCall = namedtuple("FunctionCall", ["name", "arguments"]) | |
class ToolUtils(ABC): | |
""" | |
Base class for tool utilities. | |
""" | |
def get_function_slots() -> SLOTS: | |
r""" | |
Gets a list of slots corresponding to a single function call. | |
""" | |
... | |
def tool_formatter(tools: List[Dict[str, Any]]) -> str: | |
r""" | |
Generates the system message describing all the available tools. | |
""" | |
... | |
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]: | |
r""" | |
Extracts all the function calls from the response message. | |
""" | |
... | |
class DefaultToolUtils(ToolUtils): | |
def get_function_slots() -> SLOTS: | |
return ["Action: {{name}}\nAction Input: {{arguments}}\n"] | |
def tool_formatter(tools: List[Dict[str, Any]]) -> str: | |
tool_text = "" | |
tool_names = [] | |
for tool in tools: | |
param_text = "" | |
for name, param in tool["parameters"]["properties"].items(): | |
required, enum, items = "", "", "" | |
if name in tool["parameters"].get("required", []): | |
required = ", required" | |
if param.get("enum", None): | |
enum = ", should be one of [{}]".format(", ".join(param["enum"])) | |
if param.get("items", None): | |
items = ", where each item should be {}".format(param["items"].get("type", "")) | |
param_text += " - {name} ({type}{required}): {desc}{enum}{items}\n".format( | |
name=name, | |
type=param.get("type", ""), | |
required=required, | |
desc=param.get("description", ""), | |
enum=enum, | |
items=items, | |
) | |
tool_text += "> Tool Name: {name}\nTool Description: {desc}\nTool Args:\n{args}\n".format( | |
name=tool["name"], desc=tool.get("description", ""), args=param_text | |
) | |
tool_names.append(tool["name"]) | |
return DEFAULT_TOOL_PROMPT.format(tool_text=tool_text, tool_names=", ".join(tool_names)) | |
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]: | |
regex = re.compile(r"Action:\s*([a-zA-Z0-9_]+)\s*Action Input:\s*(.+?)(?=\s*Action:|\s*$)", re.DOTALL) | |
action_match: List[Tuple[str, str]] = re.findall(regex, content) | |
if not action_match: | |
return content | |
results = [] | |
for match in action_match: | |
tool_name = match[0].strip() | |
tool_input = match[1].strip().strip('"').strip("```") | |
try: | |
arguments = json.loads(tool_input) | |
results.append((tool_name, json.dumps(arguments, ensure_ascii=False))) | |
except json.JSONDecodeError: | |
return content | |
return results | |
class GLM4ToolUtils(ToolUtils): | |
def get_function_slots() -> SLOTS: | |
return ["{{name}}\n{{arguments}}"] | |
def tool_formatter(tools: List[Dict[str, Any]]) -> str: | |
tool_text = "" | |
for tool in tools: | |
tool_text += "\n\n## {name}\n\n{body}\n在调用上述函数时,请使用 Json 格式表示调用的参数。".format( | |
name=tool["name"], body=json.dumps(tool, indent=4, ensure_ascii=False) | |
) | |
return GLM4_TOOL_PROMPT.format(tool_text=tool_text) | |
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]: | |
if "\n" not in content: | |
return content | |
tool_name, tool_input = content.split("\n", maxsplit=1) | |
try: | |
arguments = json.loads(tool_input) | |
except json.JSONDecodeError: | |
return content | |
return [(tool_name, json.dumps(arguments, ensure_ascii=False))] | |
TOOLS = { | |
"default": DefaultToolUtils(), | |
"glm4": GLM4ToolUtils(), | |
} | |
def get_tool_utils(name: str) -> "ToolUtils": | |
tool_utils = TOOLS.get(name, None) | |
if tool_utils is None: | |
raise ValueError("Tool utils `{}` not found.".format(name)) | |
return tool_utils | |