Spaces:
Runtime error
Runtime error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import logging | |
import os | |
import signal | |
import sys | |
import time | |
from concurrent.futures import ThreadPoolExecutor | |
from datetime import timedelta | |
from typing import TYPE_CHECKING, Any, Dict, Optional | |
import torch | |
import transformers | |
from peft import PeftModel | |
from transformers import PreTrainedModel, ProcessorMixin, TrainerCallback | |
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length | |
from transformers.utils import ( | |
SAFE_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
is_safetensors_available, | |
) | |
from typing_extensions import override | |
from ..extras.constants import TRAINER_LOG, V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME | |
from ..extras.logging import LoggerHandler, get_logger | |
from ..extras.misc import get_peak_memory | |
if is_safetensors_available(): | |
from safetensors import safe_open | |
from safetensors.torch import save_file | |
if TYPE_CHECKING: | |
from transformers import TrainerControl, TrainerState, TrainingArguments | |
from trl import AutoModelForCausalLMWithValueHead | |
logger = get_logger(__name__) | |
def fix_valuehead_checkpoint( | |
model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool | |
) -> None: | |
r""" | |
The model is already unwrapped. | |
There are three cases: | |
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...} | |
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...} | |
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...} | |
We assume `stage3_gather_16bit_weights_on_model_save=true`. | |
""" | |
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)): | |
return | |
if safe_serialization: | |
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME) | |
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f: | |
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()} | |
else: | |
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME) | |
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu") | |
os.remove(path_to_checkpoint) | |
decoder_state_dict, v_head_state_dict = {}, {} | |
for name, param in state_dict.items(): | |
if name.startswith("v_head."): | |
v_head_state_dict[name] = param | |
else: | |
decoder_state_dict[name.replace("pretrained_model.", "", 1)] = param | |
model.pretrained_model.save_pretrained( | |
output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization | |
) | |
if safe_serialization: | |
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"}) | |
else: | |
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME)) | |
logger.info("Value head model saved at: {}".format(output_dir)) | |
class FixValueHeadModelCallback(TrainerCallback): | |
r""" | |
A callback for fixing the checkpoint for valuehead models. | |
""" | |
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
r""" | |
Event called after a checkpoint save. | |
""" | |
if args.should_save: | |
output_dir = os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)) | |
fix_valuehead_checkpoint( | |
model=kwargs.pop("model"), output_dir=output_dir, safe_serialization=args.save_safetensors | |
) | |
class SaveProcessorCallback(TrainerCallback): | |
r""" | |
A callback for saving the processor. | |
""" | |
def __init__(self, processor: "ProcessorMixin") -> None: | |
self.processor = processor | |
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
if args.should_save: | |
output_dir = os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)) | |
getattr(self.processor, "image_processor").save_pretrained(output_dir) | |
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
if args.should_save: | |
getattr(self.processor, "image_processor").save_pretrained(args.output_dir) | |
class PissaConvertCallback(TrainerCallback): | |
r""" | |
A callback for converting the PiSSA adapter to a normal one. | |
""" | |
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
r""" | |
Event called at the beginning of training. | |
""" | |
if args.should_save: | |
model = kwargs.pop("model") | |
pissa_init_dir = os.path.join(args.output_dir, "pissa_init") | |
logger.info("Initial PiSSA adapter will be saved at: {}.".format(pissa_init_dir)) | |
if isinstance(model, PeftModel): | |
init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights") | |
setattr(model.peft_config["default"], "init_lora_weights", True) | |
model.save_pretrained(pissa_init_dir, safe_serialization=args.save_safetensors) | |
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights) | |
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
if args.should_save: | |
model = kwargs.pop("model") | |
pissa_init_dir = os.path.join(args.output_dir, "pissa_init") | |
pissa_backup_dir = os.path.join(args.output_dir, "pissa_backup") | |
pissa_convert_dir = os.path.join(args.output_dir, "pissa_converted") | |
logger.info("Converted PiSSA adapter will be saved at: {}.".format(pissa_convert_dir)) | |
# 1. save a pissa backup with init_lora_weights: True | |
# 2. save a converted lora with init_lora_weights: pissa | |
# 3. load the pissa backup with init_lora_weights: True | |
# 4. delete the initial adapter and change init_lora_weights to pissa | |
if isinstance(model, PeftModel): | |
init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights") | |
setattr(model.peft_config["default"], "init_lora_weights", True) | |
model.save_pretrained(pissa_backup_dir, safe_serialization=args.save_safetensors) | |
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights) | |
model.save_pretrained( | |
pissa_convert_dir, safe_serialization=args.save_safetensors, convert_pissa_to_lora=pissa_init_dir | |
) # TODO: use `path_initial_model_for_weight_conversion` (peft>=0.12.0) | |
model.load_adapter(pissa_backup_dir, "default", is_trainable=True) | |
model.set_adapter("default") | |
if "pissa_init" in model.peft_config.keys(): # backward compatibility (peft<0.12.0) | |
model.delete_adapter("pissa_init") | |
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights) | |
class LogCallback(TrainerCallback): | |
r""" | |
A callback for logging training and evaluation status. | |
""" | |
def __init__(self) -> None: | |
# Progress | |
self.start_time = 0 | |
self.cur_steps = 0 | |
self.max_steps = 0 | |
self.elapsed_time = "" | |
self.remaining_time = "" | |
self.thread_pool: Optional["ThreadPoolExecutor"] = None | |
# Status | |
self.aborted = False | |
self.do_train = False | |
# Web UI | |
self.webui_mode = os.environ.get("LLAMABOARD_ENABLED", "0").lower() in ["true", "1"] | |
if self.webui_mode: | |
signal.signal(signal.SIGABRT, self._set_abort) | |
self.logger_handler = LoggerHandler(os.environ.get("LLAMABOARD_WORKDIR")) | |
logging.root.addHandler(self.logger_handler) | |
transformers.logging.add_handler(self.logger_handler) | |
def _set_abort(self, signum, frame) -> None: | |
self.aborted = True | |
def _reset(self, max_steps: int = 0) -> None: | |
self.start_time = time.time() | |
self.cur_steps = 0 | |
self.max_steps = max_steps | |
self.elapsed_time = "" | |
self.remaining_time = "" | |
def _timing(self, cur_steps: int) -> None: | |
cur_time = time.time() | |
elapsed_time = cur_time - self.start_time | |
avg_time_per_step = elapsed_time / cur_steps if cur_steps != 0 else 0 | |
remaining_time = (self.max_steps - cur_steps) * avg_time_per_step | |
self.cur_steps = cur_steps | |
self.elapsed_time = str(timedelta(seconds=int(elapsed_time))) | |
self.remaining_time = str(timedelta(seconds=int(remaining_time))) | |
def _write_log(self, output_dir: str, logs: Dict[str, Any]) -> None: | |
with open(os.path.join(output_dir, TRAINER_LOG), "a", encoding="utf-8") as f: | |
f.write(json.dumps(logs) + "\n") | |
def _create_thread_pool(self, output_dir: str) -> None: | |
os.makedirs(output_dir, exist_ok=True) | |
self.thread_pool = ThreadPoolExecutor(max_workers=1) | |
def _close_thread_pool(self) -> None: | |
if self.thread_pool is not None: | |
self.thread_pool.shutdown(wait=True) | |
self.thread_pool = None | |
def on_init_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
if ( | |
args.should_save | |
and os.path.exists(os.path.join(args.output_dir, TRAINER_LOG)) | |
and args.overwrite_output_dir | |
): | |
logger.warning("Previous trainer log in this folder will be deleted.") | |
os.remove(os.path.join(args.output_dir, TRAINER_LOG)) | |
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
if args.should_save: | |
self.do_train = True | |
self._reset(max_steps=state.max_steps) | |
self._create_thread_pool(output_dir=args.output_dir) | |
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
self._close_thread_pool() | |
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
if self.aborted: | |
control.should_epoch_stop = True | |
control.should_training_stop = True | |
def on_step_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
if self.aborted: | |
control.should_epoch_stop = True | |
control.should_training_stop = True | |
def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
if not self.do_train: | |
self._close_thread_pool() | |
def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
if not self.do_train: | |
self._close_thread_pool() | |
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
if not args.should_save: | |
return | |
self._timing(cur_steps=state.global_step) | |
logs = dict( | |
current_steps=self.cur_steps, | |
total_steps=self.max_steps, | |
loss=state.log_history[-1].get("loss", None), | |
eval_loss=state.log_history[-1].get("eval_loss", None), | |
predict_loss=state.log_history[-1].get("predict_loss", None), | |
reward=state.log_history[-1].get("reward", None), | |
accuracy=state.log_history[-1].get("rewards/accuracies", None), | |
learning_rate=state.log_history[-1].get("learning_rate", None), | |
epoch=state.log_history[-1].get("epoch", None), | |
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100, | |
elapsed_time=self.elapsed_time, | |
remaining_time=self.remaining_time, | |
) | |
if state.num_input_tokens_seen: | |
logs["throughput"] = round(state.num_input_tokens_seen / (time.time() - self.start_time), 2) | |
logs["total_tokens"] = state.num_input_tokens_seen | |
if os.environ.get("RECORD_VRAM", "0").lower() in ["true", "1"]: | |
vram_allocated, vram_reserved = get_peak_memory() | |
logs["vram_allocated"] = round(vram_allocated / 1024 / 1024 / 1024, 2) | |
logs["vram_reserved"] = round(vram_reserved / 1024 / 1024 / 1024, 2) | |
logs = {k: v for k, v in logs.items() if v is not None} | |
if self.webui_mode and all(key in logs for key in ["loss", "learning_rate", "epoch"]): | |
logger.info( | |
"{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}, 'throughput': {}}}".format( | |
logs["loss"], logs["learning_rate"], logs["epoch"], logs.get("throughput", "N/A") | |
) | |
) | |
if self.thread_pool is not None: | |
self.thread_pool.submit(self._write_log, args.output_dir, logs) | |
def on_prediction_step( | |
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs | |
): | |
if self.do_train: | |
return | |
if self.aborted: | |
sys.exit(0) | |
if not args.should_save: | |
return | |
eval_dataloader = kwargs.pop("eval_dataloader", None) | |
if has_length(eval_dataloader): | |
if self.max_steps == 0: | |
self._reset(max_steps=len(eval_dataloader)) | |
self._create_thread_pool(output_dir=args.output_dir) | |
self._timing(cur_steps=self.cur_steps + 1) | |
if self.cur_steps % 5 == 0 and self.thread_pool is not None: | |
logs = dict( | |
current_steps=self.cur_steps, | |
total_steps=self.max_steps, | |
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100, | |
elapsed_time=self.elapsed_time, | |
remaining_time=self.remaining_time, | |
) | |
self.thread_pool.submit(self._write_log, args.output_dir, logs) | |