realaer's picture
Upload folder using huggingface_hub
f6f64ac verified
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
from ...extras.misc import numpify
if TYPE_CHECKING:
from transformers import EvalPrediction
@dataclass
class ComputeAccuracy:
r"""
Computes reward accuracy and supports `batch_eval_metrics`.
"""
def _dump(self) -> Optional[Dict[str, float]]:
result = None
if hasattr(self, "score_dict"):
result = {k: float(np.mean(v)) for k, v in self.score_dict.items()}
self.score_dict = {"accuracy": []}
return result
def __post_init__(self):
self._dump()
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]:
chosen_scores, rejected_scores = numpify(eval_preds.predictions[0]), numpify(eval_preds.predictions[1])
if not chosen_scores.shape:
self.score_dict["accuracy"].append(chosen_scores > rejected_scores)
else:
for i in range(len(chosen_scores)):
self.score_dict["accuracy"].append(chosen_scores[i] > rejected_scores[i])
if compute_result:
return self._dump()