Spaces:
Runtime error
Runtime error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, Dict, Optional | |
import numpy as np | |
from ...extras.misc import numpify | |
if TYPE_CHECKING: | |
from transformers import EvalPrediction | |
class ComputeAccuracy: | |
r""" | |
Computes reward accuracy and supports `batch_eval_metrics`. | |
""" | |
def _dump(self) -> Optional[Dict[str, float]]: | |
result = None | |
if hasattr(self, "score_dict"): | |
result = {k: float(np.mean(v)) for k, v in self.score_dict.items()} | |
self.score_dict = {"accuracy": []} | |
return result | |
def __post_init__(self): | |
self._dump() | |
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]: | |
chosen_scores, rejected_scores = numpify(eval_preds.predictions[0]), numpify(eval_preds.predictions[1]) | |
if not chosen_scores.shape: | |
self.score_dict["accuracy"].append(chosen_scores > rejected_scores) | |
else: | |
for i in range(len(chosen_scores)): | |
self.score_dict["accuracy"].append(chosen_scores[i] > rejected_scores[i]) | |
if compute_result: | |
return self._dump() | |