Spaces:
Runtime error
Runtime error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import shutil | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional | |
import torch | |
from transformers import PreTrainedModel | |
from ..data import get_template_and_fix_tokenizer | |
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME | |
from ..extras.logging import get_logger | |
from ..hparams import get_infer_args, get_train_args | |
from ..model import load_model, load_tokenizer | |
from .callbacks import LogCallback | |
from .dpo import run_dpo | |
from .kto import run_kto | |
from .ppo import run_ppo | |
from .pt import run_pt | |
from .rm import run_rm | |
from .sft import run_sft | |
if TYPE_CHECKING: | |
from transformers import TrainerCallback | |
logger = get_logger(__name__) | |
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None: | |
callbacks.append(LogCallback()) | |
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args) | |
if finetuning_args.stage == "pt": | |
run_pt(model_args, data_args, training_args, finetuning_args, callbacks) | |
elif finetuning_args.stage == "sft": | |
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) | |
elif finetuning_args.stage == "rm": | |
run_rm(model_args, data_args, training_args, finetuning_args, callbacks) | |
elif finetuning_args.stage == "ppo": | |
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) | |
elif finetuning_args.stage == "dpo": | |
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks) | |
elif finetuning_args.stage == "kto": | |
run_kto(model_args, data_args, training_args, finetuning_args, callbacks) | |
else: | |
raise ValueError("Unknown task: {}.".format(finetuning_args.stage)) | |
def export_model(args: Optional[Dict[str, Any]] = None) -> None: | |
model_args, data_args, finetuning_args, _ = get_infer_args(args) | |
if model_args.export_dir is None: | |
raise ValueError("Please specify `export_dir` to save model.") | |
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None: | |
raise ValueError("Please merge adapters before quantizing the model.") | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
processor = tokenizer_module["processor"] | |
get_template_and_fix_tokenizer(tokenizer, data_args) | |
model = load_model(tokenizer, model_args, finetuning_args) # must after fixing tokenizer to resize vocab | |
if getattr(model, "quantization_method", None) is not None and model_args.adapter_name_or_path is not None: | |
raise ValueError("Cannot merge adapters to a quantized model.") | |
if not isinstance(model, PreTrainedModel): | |
raise ValueError("The model is not a `PreTrainedModel`, export aborted.") | |
if getattr(model, "quantization_method", None) is not None: # quantized model adopts float16 type | |
setattr(model.config, "torch_dtype", torch.float16) | |
else: | |
if model_args.infer_dtype == "auto": | |
output_dtype = getattr(model.config, "torch_dtype", torch.float16) | |
else: | |
output_dtype = getattr(torch, model_args.infer_dtype) | |
setattr(model.config, "torch_dtype", output_dtype) | |
model = model.to(output_dtype) | |
logger.info("Convert model dtype to: {}.".format(output_dtype)) | |
model.save_pretrained( | |
save_directory=model_args.export_dir, | |
max_shard_size="{}GB".format(model_args.export_size), | |
safe_serialization=(not model_args.export_legacy_format), | |
) | |
if model_args.export_hub_model_id is not None: | |
model.push_to_hub( | |
model_args.export_hub_model_id, | |
token=model_args.hf_hub_token, | |
max_shard_size="{}GB".format(model_args.export_size), | |
safe_serialization=(not model_args.export_legacy_format), | |
) | |
if finetuning_args.stage == "rm": | |
if model_args.adapter_name_or_path is not None: | |
vhead_path = model_args.adapter_name_or_path[-1] | |
else: | |
vhead_path = model_args.model_name_or_path | |
if os.path.exists(os.path.join(vhead_path, V_HEAD_SAFE_WEIGHTS_NAME)): | |
shutil.copy( | |
os.path.join(vhead_path, V_HEAD_SAFE_WEIGHTS_NAME), | |
os.path.join(model_args.export_dir, V_HEAD_SAFE_WEIGHTS_NAME), | |
) | |
logger.info("Copied valuehead to {}.".format(model_args.export_dir)) | |
elif os.path.exists(os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME)): | |
shutil.copy( | |
os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME), | |
os.path.join(model_args.export_dir, V_HEAD_WEIGHTS_NAME), | |
) | |
logger.info("Copied valuehead to {}.".format(model_args.export_dir)) | |
try: | |
tokenizer.padding_side = "left" # restore padding side | |
tokenizer.init_kwargs["padding_side"] = "left" | |
tokenizer.save_pretrained(model_args.export_dir) | |
if model_args.export_hub_model_id is not None: | |
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token) | |
if processor is not None: | |
getattr(processor, "image_processor").save_pretrained(model_args.export_dir) | |
if model_args.export_hub_model_id is not None: | |
getattr(processor, "image_processor").push_to_hub( | |
model_args.export_hub_model_id, token=model_args.hf_hub_token | |
) | |
except Exception: | |
logger.warning("Cannot save tokenizer, please copy the files manually.") | |