Spaces:
Runtime error
Runtime error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
from collections import defaultdict | |
from typing import Any, Dict, Optional, Tuple | |
from yaml import safe_dump, safe_load | |
from ..extras.constants import ( | |
CHECKPOINT_NAMES, | |
DATA_CONFIG, | |
DEFAULT_TEMPLATE, | |
PEFT_METHODS, | |
STAGES_USE_PAIR_DATA, | |
SUPPORTED_MODELS, | |
TRAINING_STAGES, | |
VISION_MODELS, | |
DownloadSource, | |
) | |
from ..extras.logging import get_logger | |
from ..extras.misc import use_modelscope | |
from ..extras.packages import is_gradio_available | |
if is_gradio_available(): | |
import gradio as gr | |
logger = get_logger(__name__) | |
DEFAULT_CACHE_DIR = "cache" | |
DEFAULT_CONFIG_DIR = "config" | |
DEFAULT_DATA_DIR = "data" | |
DEFAULT_SAVE_DIR = "saves" | |
USER_CONFIG = "user_config.yaml" | |
QUANTIZATION_BITS = ["8", "6", "5", "4", "3", "2", "1"] | |
GPTQ_BITS = ["8", "4", "3", "2"] | |
def get_save_dir(*paths: str) -> os.PathLike: | |
r""" | |
Gets the path to saved model checkpoints. | |
""" | |
if os.path.sep in paths[-1]: | |
logger.warning("Found complex path, some features may be not available.") | |
return paths[-1] | |
paths = (path.replace(" ", "").strip() for path in paths) | |
return os.path.join(DEFAULT_SAVE_DIR, *paths) | |
def get_config_path() -> os.PathLike: | |
r""" | |
Gets the path to user config. | |
""" | |
return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG) | |
def load_config() -> Dict[str, Any]: | |
r""" | |
Loads user config if exists. | |
""" | |
try: | |
with open(get_config_path(), "r", encoding="utf-8") as f: | |
return safe_load(f) | |
except Exception: | |
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None} | |
def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None: | |
r""" | |
Saves user config. | |
""" | |
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True) | |
user_config = load_config() | |
user_config["lang"] = lang or user_config["lang"] | |
if model_name: | |
user_config["last_model"] = model_name | |
if model_name and model_path: | |
user_config["path_dict"][model_name] = model_path | |
with open(get_config_path(), "w", encoding="utf-8") as f: | |
safe_dump(user_config, f) | |
def get_model_path(model_name: str) -> str: | |
r""" | |
Gets the model path according to the model name. | |
""" | |
user_config = load_config() | |
path_dict: Dict["DownloadSource", str] = SUPPORTED_MODELS.get(model_name, defaultdict(str)) | |
model_path = user_config["path_dict"].get(model_name, "") or path_dict.get(DownloadSource.DEFAULT, "") | |
if ( | |
use_modelscope() | |
and path_dict.get(DownloadSource.MODELSCOPE) | |
and model_path == path_dict.get(DownloadSource.DEFAULT) | |
): # replace path | |
model_path = path_dict.get(DownloadSource.MODELSCOPE) | |
return model_path | |
def get_model_info(model_name: str) -> Tuple[str, str]: | |
r""" | |
Gets the necessary information of this model. | |
Returns: | |
model_path (str) | |
template (str) | |
""" | |
return get_model_path(model_name), get_template(model_name) | |
def get_template(model_name: str) -> str: | |
r""" | |
Gets the template name if the model is a chat model. | |
""" | |
return DEFAULT_TEMPLATE.get(model_name, "default") | |
def get_visual(model_name: str) -> bool: | |
r""" | |
Judges if the model is a vision language model. | |
""" | |
return model_name in VISION_MODELS | |
def list_checkpoints(model_name: str, finetuning_type: str) -> "gr.Dropdown": | |
r""" | |
Lists all available checkpoints. | |
""" | |
checkpoints = [] | |
if model_name: | |
save_dir = get_save_dir(model_name, finetuning_type) | |
if save_dir and os.path.isdir(save_dir): | |
for checkpoint in os.listdir(save_dir): | |
if os.path.isdir(os.path.join(save_dir, checkpoint)) and any( | |
os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CHECKPOINT_NAMES | |
): | |
checkpoints.append(checkpoint) | |
if finetuning_type in PEFT_METHODS: | |
return gr.Dropdown(value=[], choices=checkpoints, multiselect=True) | |
else: | |
return gr.Dropdown(value=None, choices=checkpoints, multiselect=False) | |
def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]: | |
r""" | |
Loads dataset_info.json. | |
""" | |
if dataset_dir == "ONLINE" or dataset_dir.startswith("REMOTE:"): | |
logger.info("dataset_dir is {}, using online dataset.".format(dataset_dir)) | |
return {} | |
try: | |
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f: | |
return json.load(f) | |
except Exception as err: | |
logger.warning("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err))) | |
return {} | |
def list_datasets(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> "gr.Dropdown": | |
r""" | |
Lists all available datasets in the dataset dir for the training stage. | |
""" | |
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR) | |
ranking = TRAINING_STAGES[training_stage] in STAGES_USE_PAIR_DATA | |
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking] | |
return gr.Dropdown(choices=datasets) | |