# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Dict from ...data import TEMPLATES from ...extras.constants import METHODS, SUPPORTED_MODELS from ...extras.packages import is_gradio_available from ..common import get_model_info, list_checkpoints, save_config from ..utils import can_quantize, can_quantize_to if is_gradio_available(): import gradio as gr if TYPE_CHECKING: from gradio.components import Component def create_top() -> Dict[str, "Component"]: available_models = list(SUPPORTED_MODELS.keys()) + ["Custom"] with gr.Row(): lang = gr.Dropdown(choices=["en", "ru", "zh", "ko"], scale=1) model_name = gr.Dropdown(choices=available_models, scale=3) model_path = gr.Textbox(scale=3) with gr.Row(): finetuning_type = gr.Dropdown(choices=METHODS, value="lora", scale=1) checkpoint_path = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=6) with gr.Accordion(open=False) as advanced_tab: with gr.Row(): quantization_bit = gr.Dropdown(choices=["none", "8", "4"], value="none", allow_custom_value=True, scale=2) quantization_method = gr.Dropdown(choices=["bitsandbytes", "hqq", "eetq"], value="bitsandbytes", scale=2) template = gr.Dropdown(choices=list(TEMPLATES.keys()), value="default", scale=2) rope_scaling = gr.Radio(choices=["none", "linear", "dynamic"], value="none", scale=3) booster = gr.Radio(choices=["auto", "flashattn2", "unsloth", "liger_kernel"], value="auto", scale=5) model_name.change(get_model_info, [model_name], [model_path, template], queue=False).then( list_checkpoints, [model_name, finetuning_type], [checkpoint_path], queue=False ) model_name.input(save_config, inputs=[lang, model_name], queue=False) model_path.input(save_config, inputs=[lang, model_name, model_path], queue=False) finetuning_type.change(can_quantize, [finetuning_type], [quantization_bit], queue=False).then( list_checkpoints, [model_name, finetuning_type], [checkpoint_path], queue=False ) checkpoint_path.focus(list_checkpoints, [model_name, finetuning_type], [checkpoint_path], queue=False) quantization_method.change(can_quantize_to, [quantization_method], [quantization_bit], queue=False) return dict( lang=lang, model_name=model_name, model_path=model_path, finetuning_type=finetuning_type, checkpoint_path=checkpoint_path, advanced_tab=advanced_tab, quantization_bit=quantization_bit, quantization_method=quantization_method, template=template, rope_scaling=rope_scaling, booster=booster, )