Spaces:
Sleeping
Sleeping
# KAGGLE SPECIFIC: This script is used to make training compatible with Kaggle's notebook environment. | |
import torch | |
import os | |
def load_and_save_checkpoint(input_filename, output_filename, device): | |
if os.path.isfile(input_filename): | |
print(f"Loading checkpoint '{input_filename}'") | |
checkpoint = torch.load(input_filename, map_location=device) | |
# Extract only the necessary state | |
save_state = { | |
'epoch': checkpoint['epoch'], | |
'generator_state_dict': checkpoint['generator_state_dict'], | |
'discriminator_state_dict': checkpoint['discriminator_state_dict'], | |
'optimizerG_state_dict': checkpoint['optimizerG_state_dict'], | |
'optimizerD_state_dict': checkpoint['optimizerD_state_dict'], | |
} | |
# Save the checkpoint | |
torch.save(save_state, output_filename) | |
print(f"Saved checkpoint to '{output_filename}'") | |
else: | |
print(f"No checkpoint found at '{input_filename}'") | |
if __name__ == "__main__": | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
input_checkpoint = "checkpoints/latest_checkpoint.pth.tar" | |
output_checkpoint = "checkpoints/converted_checkpoint.pth.tar" | |
load_and_save_checkpoint(input_checkpoint, output_checkpoint, device) |