import gradio as gr import torch from torchvision import transforms from PIL import Image import numpy as np from skimage.color import rgb2lab, lab2rgb import os from torch import nn # Define the model architecture (same as in the training script) class UNetBlock(nn.Module): def __init__(self, in_channels, out_channels, down=True, bn=True, dropout=False): super(UNetBlock, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False) if down \ else nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False) self.bn = nn.BatchNorm2d(out_channels) if bn else None self.dropout = nn.Dropout(0.5) if dropout else None self.down = down def forward(self, x): x = self.conv(x) if self.bn: x = self.bn(x) if self.dropout: x = self.dropout(x) return nn.ReLU()(x) if self.down else nn.ReLU(inplace=True)(x) class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.down1 = UNetBlock(1, 64, bn=False) self.down2 = UNetBlock(64, 128) self.down3 = UNetBlock(128, 256) self.down4 = UNetBlock(256, 512) self.down5 = UNetBlock(512, 512) self.down6 = UNetBlock(512, 512) self.down7 = UNetBlock(512, 512) self.down8 = UNetBlock(512, 512, bn=False) self.up1 = UNetBlock(512, 512, down=False, dropout=True) self.up2 = UNetBlock(1024, 512, down=False, dropout=True) self.up3 = UNetBlock(1024, 512, down=False, dropout=True) self.up4 = UNetBlock(1024, 512, down=False) self.up5 = UNetBlock(1024, 256, down=False) self.up6 = UNetBlock(512, 128, down=False) self.up7 = UNetBlock(256, 64, down=False) self.up8 = nn.ConvTranspose2d(128, 2, 4, 2, 1) def forward(self, x): d1 = self.down1(x) d2 = self.down2(d1) d3 = self.down3(d2) d4 = self.down4(d3) d5 = self.down5(d4) d6 = self.down6(d5) d7 = self.down7(d6) d8 = self.down8(d7) u1 = self.up1(d8) u2 = self.up2(torch.cat([u1, d7], 1)) u3 = self.up3(torch.cat([u2, d6], 1)) u4 = self.up4(torch.cat([u3, d5], 1)) u5 = self.up5(torch.cat([u4, d4], 1)) u6 = self.up6(torch.cat([u5, d3], 1)) u7 = self.up7(torch.cat([u6, d2], 1)) return torch.tanh(self.up8(torch.cat([u7, d1], 1))) # Load the checkpoint def load_checkpoint(filename, generator, map_location): if os.path.isfile(filename): print(f"Loading checkpoint '{filename}'") checkpoint = torch.load(filename, map_location=map_location) generator.load_state_dict(checkpoint['generator_state_dict']) print(f"Loaded checkpoint '{filename}' (epoch {checkpoint['epoch']})") else: print(f"No checkpoint found at '{filename}'") # Initialize the model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") generator = Generator().to(device) checkpoint_path = "checkpoints/latest_checkpoint.pth.tar" load_checkpoint(checkpoint_path, generator, map_location=device) generator.eval() # Define the transformation transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.Grayscale(num_output_channels=1), # Convert to grayscale transforms.ToTensor() ]) # Define the inference function def colorize_image(input_image): try: original_size = input_image.size input_image = transform(input_image).unsqueeze(0).to(device) with torch.no_grad(): output = generator(input_image) output = output.squeeze(0).cpu().numpy() L = input_image.squeeze(0).cpu().numpy() L = (L + 1.) * 50. ab = output * 128. Lab = np.concatenate([L, ab], axis=0).transpose(1, 2, 0) rgb_image = lab2rgb(Lab) rgb_image = Image.fromarray((rgb_image * 255).astype(np.uint8)) rgb_image = rgb_image.resize(original_size, Image.LANCZOS) return rgb_image except Exception as e: print(f"Error in colorize_image: {str(e)}") return None # Create the Gradio interface iface = gr.Interface( fn=colorize_image, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), title="Image Colorizer", description="Upload a grayscale image to colorize it." ) # Launch the app if __name__ == "__main__": iface.launch(share=True)