Spaces:
Running
on
Zero
Running
on
Zero
# Import necessary libraries | |
from PIL import Image | |
import numpy as np | |
import torch | |
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution | |
import gradio as gr | |
import spaces | |
# Function to resize image to max 2048x2048 while maintaining aspect ratio | |
def resize_image(image, max_size=2048): | |
width, height = image.size | |
if width > max_size or height > max_size: | |
aspect_ratio = width / height | |
if width > height: | |
new_width = max_size | |
new_height = int(new_width / aspect_ratio) | |
else: | |
new_height = max_size | |
new_width = int(new_height * aspect_ratio) | |
image = image.resize((new_width, new_height), Image.LANCZOS) | |
return image | |
# Function to upscale an image using Swin2SR | |
def upscale_image(image, model, processor, device): | |
try: | |
# Convert the image to RGB format | |
image = image.convert("RGB") | |
# Process the image for the model | |
inputs = processor(image, return_tensors="pt") | |
# Move inputs to the same device as model | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# Perform inference (upscale) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Move output back to CPU for further processing | |
output = outputs.reconstruction.data.squeeze().cpu().float().clamp_(0, 1).numpy() | |
output = np.moveaxis(output, source=0, destination=-1) | |
output_image = (output * 255.0).round().astype(np.uint8) # Convert from float32 to uint8 | |
# Remove 32 pixels from the bottom and right of the image | |
output_image = output_image[:-32, :-32] | |
return Image.fromarray(output_image), None | |
except RuntimeError as e: | |
return None, str(e) | |
def main(image, model_choice, save_as_jpg=True): | |
# Resize the input image | |
image = resize_image(image) | |
# Define model paths | |
model_paths = { | |
"Pixel Perfect": "caidas/swin2SR-classical-sr-x4-64", | |
"PSNR Match (Recommended)": "caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr" | |
} | |
# Load the selected Swin2SR model and processor for 4x upscaling | |
processor = AutoImageProcessor.from_pretrained(model_paths[model_choice]) | |
model = Swin2SRForImageSuperResolution.from_pretrained(model_paths[model_choice]) | |
# Try GPU first, fallback to CPU if there's an error | |
for device in [torch.device("cuda" if torch.cuda.is_available() else "cpu"), torch.device("cpu")]: | |
model.to(device) | |
upscaled_image, error = upscale_image(image, model, processor, device) | |
if upscaled_image is not None: | |
if save_as_jpg: | |
# Save the upscaled image as JPG with 98% compression | |
upscaled_image.save("upscaled_image.jpg", quality=98) | |
return "upscaled_image.jpg" | |
else: | |
# Save the upscaled image as PNG | |
upscaled_image.save("upscaled_image.png") | |
return "upscaled_image.png" | |
if device.type == "cpu": | |
return f"Error: Unable to process the image. {error}" | |
return "Error: Unable to process the image on both GPU and CPU." | |
# Gradio interface | |
def gradio_interface(image, model_choice, save_as_jpg): | |
result = main(image, model_choice, save_as_jpg) | |
if result.startswith("Error:"): | |
return gr.update(value=None), result | |
return result, None | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Dropdown( | |
choices=["PSNR Match (Recommended)", "Pixel Perfect"], | |
label="Select Model", | |
value="PSNR Match (Recommended)" | |
), | |
gr.Checkbox(value=True, label="Save as JPEG"), | |
], | |
outputs=[ | |
gr.File(label="Download Upscaled Image"), | |
gr.Textbox(label="Error Message", visible=True) | |
], | |
title="Image Upscaler", | |
description="Upload an image, select a model, upscale it, and download the new image. Images larger than 2048x2048 will be resized while maintaining aspect ratio. If GPU processing fails, it will attempt to process on CPU.", | |
) | |
# Launch the interface | |
interface.launch() |