reedmayhew commited on
Commit
29356cb
1 Parent(s): efb8b79

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -0
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ from PIL import Image
3
+ import torch
4
+ import numpy as np
5
+ from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution
6
+ import gradio as gr # Import Gradio for creating the interface
7
+
8
+ # Function to upscale an image using Swin2SR
9
+ def upscale_image(image, model, processor, device):
10
+ # Convert the image to RGB format
11
+ image = image.convert("RGB")
12
+
13
+ # Process the image for the model
14
+ inputs = processor(image, return_tensors="pt")
15
+
16
+ # Move inputs to the same device as model
17
+ inputs = {k: v.to(device) for k, v in inputs.items()}
18
+
19
+ # Perform inference (upscale)
20
+ with torch.no_grad():
21
+ outputs = model(**inputs)
22
+
23
+ # Move output back to CPU for further processing
24
+ output = outputs.reconstruction.data.squeeze().cpu().clamp_(0, 1).numpy()
25
+ output = np.moveaxis(output, source=0, destination=-1)
26
+ output_image = (output * 255.0).round().astype(np.uint8) # Convert from float32 to uint8
27
+
28
+ # Remove 32 pixels from the bottom and right of the image
29
+ output_image = output_image[:-32, :-32]
30
+
31
+ return Image.fromarray(output_image)
32
+
33
+ @spaces.GPU
34
+ def main(image, save_as_jpg=True):
35
+ # Check if GPU is available and set the device accordingly
36
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
37
+
38
+ regular_model = "caidas/swin2SR-classical-sr-x4-64"
39
+ realworld_model = "caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr"
40
+
41
+ # Load the Swin2SR model and processor for 4x upscaling
42
+ processor = AutoImageProcessor.from_pretrained(realworld_model)
43
+ model = Swin2SRForImageSuperResolution.from_pretrained(realworld_model)
44
+
45
+ # Move the model to the device (GPU or CPU)
46
+ model.to(device)
47
+
48
+ # Upscale the image
49
+ upscaled_image = upscale_image(image, model, processor, device)
50
+
51
+ if save_as_jpg:
52
+ # Save the upscaled image as JPG with 98% compression
53
+ upscaled_image.save("upscaled_image.jpg", quality=98)
54
+ return "upscaled_image.jpg"
55
+ else:
56
+ # Save the upscaled image as PNG
57
+ upscaled_image.save("upscaled_image.png")
58
+ return "upscaled_image.png"
59
+
60
+ # Gradio interface
61
+ def gradio_interface(image, save_as_jpg):
62
+ return main(image, save_as_jpg)
63
+
64
+ # Create a Gradio interface
65
+ interface = gr.Interface(
66
+ fn=gradio_interface,
67
+ inputs=[
68
+ gr.inputs.Image(type="pil", label="Upload Image"),
69
+ gr.inputs.Checkbox(default=True, label="Save as JPEG"),
70
+ ],
71
+ outputs=gr.outputs.File(label="Download Upscaled Image"),
72
+ title="Image Upscaler",
73
+ description="Upload an image, upscale it, and download the new image.",
74
+ )
75
+
76
+ # Launch the interface
77
+ interface.launch()