# Import necessary libraries from PIL import Image import numpy as np import torch from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution import gradio as gr import spaces # Function to resize image to max 2048x2048 while maintaining aspect ratio def resize_image(image, max_size=2048): width, height = image.size if width > max_size or height > max_size: aspect_ratio = width / height if width > height: new_width = max_size new_height = int(new_width / aspect_ratio) else: new_height = max_size new_width = int(new_height * aspect_ratio) image = image.resize((new_width, new_height), Image.LANCZOS) return image # Function to upscale an image using Swin2SR def upscale_image(image, model, processor, device): # Convert the image to RGB format image = image.convert("RGB") # Process the image for the model inputs = processor(image, return_tensors="pt") # Move inputs to the same device as model inputs = {k: v.to(device) for k, v in inputs.items()} # Perform inference (upscale) with torch.no_grad(): outputs = model(**inputs) # Move output back to CPU for further processing output = outputs.reconstruction.data.squeeze().cpu().float().clamp_(0, 1).numpy() output = np.moveaxis(output, source=0, destination=-1) output_image = (output * 255.0).round().astype(np.uint8) # Convert from float32 to uint8 # Remove 32 pixels from the bottom and right of the image output_image = output_image[:-32, :-32] return Image.fromarray(output_image) @spaces.GPU def main(image, model_choice, save_as_jpg=True): # Check if GPU is available and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Resize the input image image = resize_image(image) # Define model paths model_paths = { "Pixel Perfect": "caidas/swin2SR-classical-sr-x4-64", "PSNR Match (Recommended)": "caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr" } # Load the selected Swin2SR model and processor for 4x upscaling processor = AutoImageProcessor.from_pretrained(model_paths[model_choice]) model = Swin2SRForImageSuperResolution.from_pretrained(model_paths[model_choice]) # Move the model to the device (GPU or CPU) model.to(device) # Upscale the image upscaled_image = upscale_image(image, model, processor, device) if save_as_jpg: # Save the upscaled image as JPG with 98% compression upscaled_image.save("upscaled_image.jpg", quality=98) return "upscaled_image.jpg" else: # Save the upscaled image as PNG upscaled_image.save("upscaled_image.png") return "upscaled_image.png" # Gradio interface def gradio_interface(image, model_choice, save_as_jpg): return main(image, model_choice, save_as_jpg) # Create a Gradio interface interface = gr.Interface( fn=gradio_interface, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Dropdown( choices=["PSNR Match (Recommended)", "Pixel Perfect"], label="Select Model", value="PSNR Match (Recommended)" ), gr.Checkbox(value=True, label="Save as JPEG"), ], outputs=gr.File(label="Download Upscaled Image"), title="Image Upscaler", description="Upload an image, select a model, upscale it, and download the new image. Images larger than 2048x2048 will be resized while maintaining aspect ratio.", ) # Launch the interface interface.launch()